某班數(shù)學(xué)興趣小組有男生3名,分別記為a1,a2,a3,女生兩名,分別記為b1,b2,現(xiàn)從中任選2名學(xué)生去參加校數(shù)學(xué)競(jìng)賽.
(1)這種選法一共有多少種不同的結(jié)果?請(qǐng)列出所有可能的結(jié)果;
(2)求參賽學(xué)生中恰有一名男生的概率;
(3)求參賽學(xué)生中至少有一名男生的概率.
考點(diǎn):相互獨(dú)立事件的概率乘法公式,列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率
專題:概率與統(tǒng)計(jì)
分析:(1)任選2名學(xué)生去參加校數(shù)學(xué)競(jìng)賽,共有
C
2
5
=10種不同的結(jié)果,利用列舉法能寫出所有可能的結(jié)果.
(2)參賽學(xué)生中恰有一名男生,包含的基本事件的情況為6種,由此能求出參賽學(xué)生中恰有一名男生的概率.
(3)參賽學(xué)生中沒有一名男生,包含的基本事件的情況為3種,由此能求出參賽學(xué)生中至少有一名男生的概率.
解答: 解:(1)任選2名學(xué)生去參加校數(shù)學(xué)競(jìng)賽,
共有
C
2
5
=10種不同的結(jié)果,所有可能的結(jié)果為:
(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),
(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2).
(2)參賽學(xué)生中恰有一名男生,包含的基本事件的情況為:
(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),共6種,
∴參賽學(xué)生中恰有一名男生的概率為;p1=
6
10
=
3
5

(3)參賽學(xué)生中沒有一名男生,包含的基本事件的情況為:
(a1,a2),(a1,a3),(a2,a3),
∴參賽學(xué)生中至少有一名男生的概率:p2=1-
3
10
=
7
10
點(diǎn)評(píng):本題考查概率的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意列舉法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x+1
2x-1

(1)若f(a)=2,求a的值;
(2)證明f(x)在x∈(0,+∞)單調(diào)遞減;
(3)若x∈(1,4),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:x1和x2是方程x2-mx-2=0的兩個(gè)實(shí)根,不等式a2-5a-3≥|x1-x2|對(duì)任意實(shí)數(shù)m∈[-1,1]恒成立;命題q:不等式ax2+2x-1>0有解,若p∨q為真命題,p∧q為假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+x2(x∈R),g(x)滿足g′(x)=
a
x
(a∈R,x>0),且g(e)=a,e為自然對(duì)數(shù)的底數(shù).
(Ⅰ)已知h(x)=e1-xf(x),求h(x)在(1,h(1))處的切線方程;
(Ⅱ)若存在x∈[1,e],使得g(x)≥-x2+(a+2)x成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2<4},B={x|
4
x+3
>1}.
(1)求集合A∩B;
(2)若不等式2x2+ax+b<0的解集為B,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面直角坐標(biāo)系xOy上的區(qū)域D由不等式組
0≤x≤
2
y≤2
x≤
2
y
給定.若M(x,y)為D上的動(dòng)點(diǎn),點(diǎn)A的坐標(biāo)為(
2
,1).
(1)求z=
OM
OA
的最大值;
(2)求w=
y-3
x-2
2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點(diǎn)的雙曲線的漸近線方程是y=±
3
x,且雙曲線過點(diǎn)(
2
3

(Ⅰ)求雙曲線的方程;
(Ⅱ)過雙曲線右焦點(diǎn)F作傾斜角為
π
4
的直線交雙曲線于A,B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=log2
1+x
1-x

(1)求f(x)的定義域;
(2)證明:f(x)為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)解關(guān)于x的方程:log5(x+1)-log 
1
5
(x-3)=1
(2)關(guān)于x的方程(
3
4
x=
3a+2
5-a
有負(fù)根,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案