1.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某四面體的三視圖,則該四面體的表面積為( 。
A.2(1+$\sqrt{2}$+$\sqrt{3}$)B.2(1+2$\sqrt{2}$+$\sqrt{3}$)C.4+2$\sqrt{6}$D.4(1+$\sqrt{2}$)

分析 根據(jù)三視圖知幾何體是三棱錐P-ABC是棱長為2的正方體一部分,由正方形的性質(zhì)求棱長、判斷位置關(guān)系,由三角形的面積公式求出該四面體的表面積.

解答 解:根據(jù)三視圖知幾何體是三棱錐P-ABC是棱長為2的正方體一部分,
直觀圖如圖所示:
由正方體的性質(zhì)可得,PC=PA=AC=2$\sqrt{2}$,PB=$2\sqrt{3}$,
∴BC⊥PC,AB⊥PA,
∴該四面體的表面積:
S=$\frac{1}{2}×2×2+2×\frac{1}{2}×2×2\sqrt{2}$+$\frac{1}{2}×2\sqrt{2}×2\sqrt{2}×\frac{\sqrt{3}}{2}$
=2(1+2$\sqrt{2}$+$\sqrt{3}$),
故選:B.

點(diǎn)評 本題考查三視圖求幾何體的體積,由三視圖冰借助于正方體復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)是定義在(-2,2)上的奇函數(shù),且f(x)在[0,2)內(nèi)單調(diào)遞減,則滿足f(2-a)<f(a2-4)的實(shí)數(shù)a的取值范圍為($\sqrt{2}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知E,F(xiàn)分別是棱長為1的正方體ABCD-A1B1C1D1的棱BC,CC1的中點(diǎn),則截面AEFD1與底面ABCD所成二面角的正弦值是$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.四邊形ABCD是正方形,△PAB與△PAD均是以A為直角頂點(diǎn)的等腰直角三角形,點(diǎn)F是PB的中點(diǎn),點(diǎn)E是邊BC上的任意一點(diǎn).
(1)求證:AF⊥EF;    
(2)求二面角A-PC-B的平面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,一個(gè)側(cè)棱長為l的直三棱柱ABC-A1B1C1容器中盛有液體(不計(jì)容器厚度).若液面恰好分別過棱AC,BC,B1C1,A1Cl的中點(diǎn)D,E,F(xiàn),G.
(I)求證:平面DEFG∥平面ABB1A1;
(Ⅱ)當(dāng)?shù)酌鍭BC水平放置時(shí),求液面的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD為正方形,PD=DC,E、F分別在AB、PB上,且BE:AE=1:2,PF:BF=2:1.
(1)求平面DEF與平面PBC所成鈍二面角的余弦值;
(2)在平面PAD內(nèi)是否存在一點(diǎn)G,使GF⊥平面PCB?若存在,求出它的坐標(biāo),若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線圖是一個(gè)幾何體的三視圖,則該幾何體體積為( 。
A.$\frac{8π}{3}$B.C.$\frac{14π}{3}$D.$\frac{16π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{14}{3}$B.5C.$\frac{16}{3}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.定義域在R上的函數(shù)f(x)滿足f(x+1)=2f(x),若當(dāng)-1≤x≤0時(shí),f(x)=-$\frac{x(x+1)}{2}$,則當(dāng)0≤x≤1時(shí),f(x)=-x(x-1).

查看答案和解析>>

同步練習(xí)冊答案