已知平行四邊形ABCD和矩形ACEF所在的平面互相垂直,AB=1,AD=2,∠ADC=60°,AF=a(a>0)
(Ⅰ)求證:AC⊥BF;
(Ⅱ)若二面角F-BD-A的大小為60°,求a的值.
考點(diǎn):用空間向量求平面間的夾角,與二面角有關(guān)的立體幾何綜合題
專題:綜合題,空間位置關(guān)系與距離,空間角,空間向量及應(yīng)用
分析:(Ⅰ)在△ACD中,由題設(shè)條件推導(dǎo)出CD⊥CA,由ABCD是平行四邊形,知CA⊥AB,由直線垂直于平面的性質(zhì)得到AC⊥BF.
(Ⅱ)以CD為x軸,CA為y軸,CE為z軸,建立空間直角坐標(biāo)系,由題設(shè)條件分別求出平面ABD和平面FBD的法向量,用向量法,利用二面角F-BD-A的大小為60°,即可求a的值.
解答: (Ⅰ)證明:在△ACD中,AC2=AD2+CD2-2AD•CD•cos60°=4+1-2×2×1×
1
2
=3,
∴AC2+CD2=AD2,∴CD⊥CA,
∵ABCD是平行四邊形,
∴CD∥AB,
∴CA⊥AB,
∵矩形ACEF中,CA⊥AF,
∴CA⊥平面ABF,
∵BF?平面ABF,
∴AC⊥BF;
(Ⅱ)解:∵平行四邊形ABCD和矩形ACEF所在的平面互相垂直,
∴CE⊥平面ABCD,
以CD為x軸,CA為y軸,CE為z軸,建立空間直角坐標(biāo)系,
得C(0,0,0),D(1,0,0),A(0,
3
,0),F(xiàn)(0,
3
,a),B(-1,
3
,0),
FB
=(-1,0,-a),
FD
=(1,-
3
,-a),
平面ABD的法向量
n
=(0,0,1),設(shè)平面FBD的法向量
m
=(x,y,z),
-x-az=0
x-
3
y-az=0
,
m
=(-a,-
2a
3
,1),
∴cos60°=|cos<
n
m
>|=
1
a2+
4
3
a2+1
=
1
2

∴a=
3
7
7
.???????????????????
點(diǎn)評:本題考查線面垂直,考查面面角,考查學(xué)生分析解決問題的能力,考查向量法的運(yùn)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>1,b>1,且lnalnb=
1
4
,則ab( 。
A、有最大值1
B、有最小值1
C、有最大值e
D、有最小值e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,已知BC=1,BB1=2,∠BCC1=90°,AB⊥側(cè)面BB1C1C.
(1)求直線C1B與底面ABC所成角的正弦值;
(2)若E為CC1的中點(diǎn),AB=
2
,求平面AEB1與平面A1EB1的夾角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=x2-ax+1,求使y≥0對任意a∈[-3,3]恒成立的x取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)如圖所示的三視圖畫出對應(yīng)的幾何體.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|x 12-x 22+b(x1-x2)|≤4對任意x1,x2∈[-1,1]恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在四棱錐P-ABCD中,四邊形ABCD為菱形,△PAD為等邊三角形,平面PAD⊥平面ABCD,且∠DAB=60°,AB=2,E為AD的中點(diǎn).
(Ⅰ)求證:AD⊥PB;
(Ⅱ)求二面角A-PD-C的余弦值;
(Ⅲ)在棱PB上是否存在點(diǎn)F,使EF∥平面PDC?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊是a,b,c,且a2=b2+c2-bc.
(1)求角A;
(2)若a=
3
,S為△ABC的面積,求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩平面的法向量分別為
m
=(1,1,0),
n
=(0,1,1),則兩平面所成的二面角大小為
 

查看答案和解析>>

同步練習(xí)冊答案