分析 由俯視圖判斷出PO⊥平面ABCD,由線面垂直的定義、判定定理判斷出側(cè)面中直角三角形的個數(shù),由條件求出四棱錐的高,代入椎體的體積公式求出該四棱錐的體積.
解答 解:由俯視圖可得,PO⊥平面ABCD,
∴PO⊥AB,
∵AB⊥BC,且PO∩BC=O,
∴AB⊥PB,
同理可證,CD⊥PC,則△PAB、△PDC是直角三角形,
∵側(cè)視圖為直角三角形,
∴△PBC是直角三角形,且PC⊥PB,
∴四棱錐的側(cè)面中直角三角形的個數(shù)是3,
在△PBC中,
∵PC⊥PB,PO⊥BC,O是BC的中點(diǎn),BC=2,
∴PO=$\frac{1}{2}$BC=1,
∴該四棱錐的體積V=$\frac{1}{3}×2×2×1$=$\frac{4}{3}$,
故答案為:3;$\frac{4}{3}$.
點(diǎn)評 本題考查幾何體的三視圖,線面垂直的定義、判定定理,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${\vec e_1}$=(0,0),${\vec e_2}$=(1,2) | B. | ${\vec e_1}$=(0,-1),${\vec e_2}$=(-1,0) | ||
C. | ${\vec e_1}$=(-2,3),${\vec e_2}$=(4,-6) | D. | ${\vec e_1}$=(1,3),${\vec e_2}$=(4,12) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{27}{13}$ | C. | $\frac{9}{19}$ | D. | $\frac{9}{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$+$\frac{1}{2}$i | B. | -$\frac{1}{2}$+$\frac{1}{2}$i | C. | $\frac{1}{2}$-$\frac{1}{2}$i | D. | -$\frac{1}{2}$-$\frac{1}{2}$i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com