分析 根據(jù)題意,$\overrightarrow{a}$與$\overrightarrow$不共線,求出$\overrightarrow{a}$與$\overrightarrow$共線時(shí)λ的值,即可得出所求λ的取值范圍.
解答 解:根據(jù)題意,要使$\overrightarrow a$,$\overrightarrow b$作為平面內(nèi)所有向量的一組基底,則$\overrightarrow{a}$與$\overrightarrow$不共線,
當(dāng)$\overrightarrow{a}$與$\overrightarrow$共線時(shí),必存在實(shí)數(shù)m使$\overrightarrow$=m$\overrightarrow{a}$,m∈R;
即2$\overrightarrow{{e}_{1}}$+λ$\overrightarrow{{e}_{2}}$=m($\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$),
故可得$\left\{\begin{array}{l}{2=m}\\{λ=2m}\end{array}\right.$,解得m=2,λ=4;
故要使兩向量作基底,必有λ≠4.
故答案為:(-∞,4)∪(4,+∞).
點(diǎn)評(píng) 本題考查了平面向量共線定理的應(yīng)用問(wèn)題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3 | B. | -1 | C. | 1 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①④ | B. | ④ | C. | ②③⑤ | D. | ⑤ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x+y=0或$\frac{x}{25}$+y=0 | B. | x-y=0或$\frac{x}{25}$+y=0 | C. | x+y=0或$\frac{x}{25}$-y=0 | D. | x-y=0或$\frac{x}{25}$-y=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{2}$x±y=0 | B. | x±2$\sqrt{2}$y=0 | C. | x±3$\sqrt{2}$y=0 | D. | 3$\sqrt{2}$x±y=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 終邊不同的角同一三角函數(shù)值可以相等 | |
B. | 三角形的內(nèi)角是第一象限角或第二象限角 | |
C. | 第一象限是銳角 | |
D. | 第二象限的角比第一象限的角大 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{7}}}{7}$ | B. | $\frac{{2\sqrt{7}}}{7}$ | C. | $\frac{{\sqrt{7}}}{14}$ | D. | $\frac{{5\sqrt{7}}}{14}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com