【題目】微信是當前主要的社交應用之一,有著幾億用戶,覆蓋范圍廣,及時快捷,作為移動支付的重要形式,微信支付成為人們支付的重要方式和手段。某公司為了解人們對“微信支付”認可度,對年齡段的人群隨機抽取人進行了一次“你是否喜歡微信支付”的問卷調查,根據(jù)調查結果得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:
組號 | 分組 | 喜歡微信支付的人數(shù) | 喜歡微信支付的人數(shù) 占本組的頻率 |
第一組 | |||
第二組 | |||
第三組 | |||
第四組 | |||
第五組 | |||
第六組 |
(1)補全頻率分布直方圖,并求, , 的值;
(2)在第四、五、六組“喜歡微信支付”的人中,用分層抽樣的方法抽取人參加“微信支付日鼓勵金”活動,求第四、五、六組應分別抽取的人數(shù);
(3)在(2)中抽取的人中隨機選派人做采訪嘉賓,求所選派的人沒有第四組人的概率.
【答案】(1) ,,;(2);(3) .
【解析】試題分析:(1)由頻率表中第四組數(shù)據(jù)可知,第四組總人數(shù)為,再結合頻率分布直方圖,
即可求解的值;
(2)因為第四、五、六組“喜歡微信支付”的人數(shù)共有人,由分層抽樣原理可知,第四、五、六組分別取的人數(shù);
(3)設第四組4人為: ,第五組2人為:,第六組1人為:,
列出從7人中隨機抽取2名所有可能的結果,利用古典概型及其概率的概率的計算公式,即
可求解概率.
試題解析:
(1)畫圖,由頻率表中第四組數(shù)據(jù)可知,第四組總人數(shù)為,再結合頻率分布直方圖
可知
所以
第二組的頻率為,所以
(2)因為第四、五、六組“喜歡微信支付”的人數(shù)共有105人,由分層抽樣原理可知,第四、五、六組分別取的人數(shù)為4人,2人,1人.
(3)設第四組4人為: ,第五組2人為:,第六組1人為:.
則從7人中隨機抽取2名所有可能的結果為:
, , , , , , , , , ,
, , , , , , , , , 共21種;
其中恰好沒有第四組人的所有可能結果為:,共3種;
所以所抽取的2人中恰好沒有第四組人的概率為.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為, , 為橢圓的上頂點, 為等邊三角形,且其面積為, 為橢圓的右頂點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與橢圓相交于兩點(不是左、右頂點),且滿足,試問:直線是否過定點?若過定點,求出該定點的坐標,否則說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,離心率,過且與軸垂直的直線與橢圓在第一象限內的交點為,且.
(1)求橢圓的方程;
(2)過點的直線交橢圓于兩點,當時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2018海南高三階段性測試(二模)】如圖,在直三棱柱中, , ,點為的中點,點為上一動點.
(I)是否存在一點,使得線段平面?若存在,指出點的位置,若不存在,請說明理由.
(II)若點為的中點且,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高考復習經(jīng)過二輪“見多識廣”之后,為了研究考前“限時搶分”強化訓練次數(shù)與答題正確率的關系,對某校高三某班學生進行了關注統(tǒng)計,得到如表數(shù)據(jù):
1 | 2 | 3 | 4 | |
20 | 30 | 50 | 60 |
(1)求關于的線性回歸方程,并預測答題正確率是的強化訓練次數(shù)(保留整數(shù));
(2)若用()表示統(tǒng)計數(shù)據(jù)的“強化均值”(保留整數(shù)),若“強化均值”的標準差在區(qū)間內,則強化訓練有效,請問這個班的強化訓練是否有效?
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
, ,樣本數(shù)據(jù), ,…, 的標準差為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4,坐標系與參數(shù)方程
已知在平面直角坐標系xOy中,橢圓C的方程為,以O為極點,x軸的非負半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程為.
(1)求直線的直角坐標方程;
(2)設M(x,y)為橢圓C上任意一點,求|x+y﹣1|的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com