分析 (1)使用分析法逐步找出使不等式成立的條件即可.
(2)利用反證法進行證明即可.
解答 證明:(1)欲證$\sqrt{a}$-$\sqrt{a-1}$<$\sqrt{a-2}$-$\sqrt{a-3}$,
只需證$\sqrt{a}$-$\sqrt{a-2}$<$\sqrt{a-1}$-$\sqrt{a-3}$,
只需證:($\sqrt{a}$-$\sqrt{a-2}$)2<($\sqrt{a-1}$-$\sqrt{a-3}$)2,即2a-2-2$\sqrt{a}$•$\sqrt{a-2}$<2a-4-2$\sqrt{a-1}$•$\sqrt{a-3}$.
只需證:a2-2a>a2-4a+4+2$\sqrt{{a}^{2}-4a+3}$,即a-2>$\sqrt{{a}^{2}-4a+3}$,
只需證:a2-4a+4>a2-4a+3,
只需證:4>3.
顯然,4>3恒成立,
∴$\sqrt{a}$-$\sqrt{a-1}$<$\sqrt{a-2}$-$\sqrt{a-3}$(a≥3);
(2)假設$\frac{1+b}{a}$<2,$\frac{1+a}$<2,
∵a>0,b>0,
∴1+b<2a,1+a<2b,
∴2+b+a<2(a+b),
∴a+b>2,與a+b=1矛盾,
∴$\frac{1+b}{a}$,$\frac{1+a}$中至多有一個小于2.
點評 本題考查了分析法證明不等式,用反證法證明時,應先假設原命題不成立,即原命題的反面成立,只需否定原命題的結論即可,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=2x-1 | B. | f(x)=2x+1 | C. | f(x)=2x+2 | D. | f(x)=2x-2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 91 | B. | 92 | C. | 94 | D. | 96 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com