精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在五面體中,底面為矩形,,,過的平面交棱,交棱

(1)證明:平面;

(2)若,求平面與平面所成銳二面角的大小.

【答案】(1)見解析; (2).

【解析】

(1)根據線面平行的判定與性質定理,證明平面;

(2)根據線面垂直的判定與性質,知,,以為坐標原點, 所在方向為軸正方向,建立空間直角坐標系,用空間向量法求二面角的大小.

(1)證明:因為底面為矩形,所以,又因為平面平面,所以平面

又因為平面,平面平面,所以,

又因為平面,平面,所以平面

(2)解: ,平面,

又因為平面,所以;

因為,所以平面,所以,

為坐標原點, 所在方向為軸正方向建立如圖所示空間直角坐標系,

,則,所以,

設平面的一個法向量為,則,令,得,

易知平面的一個法向量為

設平面與平面所成的銳二面角為,則,

所以,故平面與平面所成銳二面角為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數,對任意的,滿足,其中為常數.

(Ⅰ)若,求處的切線方程;

(Ⅱ)已知,求證;

(Ⅲ)當存在三個不同的零點時,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2019年,隨著中國第一款5G手機投入市場,5G技術已經進入高速發(fā)展階段.已知某5G手機生產廠家通過數據分析,得到如下規(guī)律:每生產手機萬臺,其總成本為,其中固定成本為800萬元,并且每生產1萬臺的生產成本為1000萬元(總成本=固定成本+生產成本),銷售收入萬元滿足

1)將利潤表示為產量萬臺的函數;

2)當產量為何值時,公司所獲利潤最大?最大利潤為多少萬元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】故宮博物院五一期間同時舉辦“戲曲文化展”、“明代御窖瓷器展”、“歷代青綠山水畫展”、 “趙孟頫書畫展”四個展覽.某同學決定在五一當天的上、下午各參觀其中的一個,且至少參觀一個畫展,則不同的參觀方案共有

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1為某省2018年1~4月快遞業(yè)務量統(tǒng)計圖,圖2是該省2018年1~4月快遞業(yè)務收入統(tǒng)計圖,下列對統(tǒng)計圖理解錯誤的是( )

A. 2018年1~4月的業(yè)務量,3月最高,2月最低,差值接近2000萬件

B. 2018年1~4月的業(yè)務量同比增長率均超過50%,在3月底最高

C. 從兩圖來看,2018年1~4月中的同一個月的快遞業(yè)務量與收入的同比增長率并不完全一致

D. 從1~4月來看,該省在2018年快遞業(yè)務收入同比增長率逐月增長

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,側棱底面,且,為棱的中點,作于點.

1)證明:平面

2)若面與面所成二面角的大小為,求與面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費(單位:萬元)對年銷售量(單位:)的影響,對近年的年宣傳費和年銷售量作了初步統(tǒng)計和處理,得到的數據如下:

年宣傳費(單位:萬元)

年銷售量(單位:

,.

(1)在給定的坐標系中畫出表中數據的散點圖;

(2)求出關于的線性回歸方程

(3)若公司計劃下一年度投入宣傳費萬元,試預測年銷售量的值.

參考公式

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙、丙、丁四位同學中僅有一人申請了北京大學的自主招生考試,當他們被問到誰申請了北京大學的自主招生考試時,甲說:“丙或丁申請了”;乙說:“丙申請了”;丙說:“甲和丁都沒有申請”;丁說:“乙申請了”,如果這四位同學中只有兩人說的是對的,那么申請了北京大學的自主招生考試的同學是______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某電影院共有1000個座位,票價不分等次,根據影院的經營經驗,當每張票價不超過10元時,票可全售出;當每張票價高于10元時,每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院定一個合適的票價,需符合的基本條件是:①為了方便找零和算賬,票價定為1元的整數倍;②電影院放一場電影的成本費用支出為5750元,票房的收入必須高于成本支出,用x(元)表示每張票價,用y(元)表示該影院放映一場的凈收入(除去成本費用支出后的收入)

問:

(1)把y表示為x的函數,并求其定義域;

(2)試問在符合基本條件的前提下,票價定為多少時,放映一場的凈收人最多?

查看答案和解析>>

同步練習冊答案