【題目】已知函數(shù)f(x)=xax+(a1),

1)討論函數(shù)的單調(diào)性;

2)證明:若,則對(duì)任意xx,xx,有。

【答案】1)見(jiàn)解析(2)見(jiàn)解析

【解析】

分析:(1)根據(jù)對(duì)數(shù)函數(shù)定義可知定義域?yàn)榇笥?/span>0的數(shù),求出f′(x)討論當(dāng)a-1=1時(shí)導(dǎo)函數(shù)大于0,函數(shù)單調(diào)遞增;當(dāng)a-1>1時(shí)討論函數(shù)的增減性;(2)構(gòu)造函數(shù)g(x)=f(x)+x,求出導(dǎo)函數(shù),根據(jù)a的取值范圍得到導(dǎo)函數(shù)一定大于0,則g(x)為單調(diào)遞增函數(shù),則利用當(dāng)x1>x2>0時(shí)有g(x1)-g(x2)>0即可得證.

詳解:

(1)的定義域?yàn)?/span>.

.

(i)若,則,故上單調(diào)遞增.

(ii)若,而,故,則當(dāng)時(shí),;

當(dāng)時(shí),,

單調(diào)遞減,在單調(diào)遞增.

(iii)若,同理可得單調(diào)遞減,在,單調(diào)遞增.

(2)考慮函數(shù)

由于,故,即單調(diào)增加,從而當(dāng)時(shí)有,即,故

當(dāng)時(shí),有.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

1)求曲線的直角坐標(biāo)方程和直線的普通方程;

2)設(shè)點(diǎn)為曲線上的動(dòng)點(diǎn),求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)五位自然數(shù)數(shù)稱為跳躍數(shù),如果同時(shí)有(例如1328440329都是跳躍數(shù),而1234554371,94333都不是跳躍數(shù)),則由1,23,4,5組成沒(méi)有重復(fù)數(shù)字且1,4不相鄰的跳躍數(shù)共有_____個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)為,且對(duì)任意的實(shí)數(shù)都有是自然對(duì)數(shù)的底數(shù)),且,若關(guān)于的不等式的解集中恰有唯一一個(gè)整數(shù),則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中, 是正三角形,四邊形是矩形,且.

(1)求證:平面平面

(2)若點(diǎn)在線段上,且,當(dāng)三棱錐的體積為時(shí),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線Cx22pyp0)的焦點(diǎn)為(0,1

1)求拋物線C的方程;

2)設(shè)直線l2ykx+m與拋物線C有唯一公共點(diǎn)P,且與直線l1y=﹣1相交于點(diǎn)Q,試問(wèn),在坐標(biāo)平面內(nèi)是否存在點(diǎn)N,使得以PQ為直徑的圓恒過(guò)點(diǎn)N?若存在,求出點(diǎn)N的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)PPMN的頂點(diǎn),M(﹣2,0),N2,0),直線PM,PN的斜率之積為﹣

1)求點(diǎn)P的軌跡E的方程;

2)設(shè)四邊形ABCD的頂點(diǎn)都在曲線E上,且ABCD,直線ABCD分別過(guò)點(diǎn)(﹣1,0),(10),求四邊形ABCD的面積為時(shí),直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)若直線且曲線在A處的切線與在B處的切線相互平行,求a的取值范圍;

(Ⅱ)設(shè)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn)若不等式恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案