已知函數(shù)為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)上的單調(diào)區(qū)間;
(2)設(shè)函數(shù),是否存在區(qū)間,使得當(dāng)時(shí)函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033045767572.png" style="vertical-align:middle;" />,若存在求出,若不存在說(shuō)明理由.
(1)時(shí),為單調(diào)增區(qū)間;時(shí),為單調(diào)遞減區(qū)間,為單調(diào)遞增區(qū)間;時(shí),單調(diào)遞減區(qū)間為:, 單調(diào)遞增區(qū)間為:;時(shí),單調(diào)遞增區(qū)間為:.
(2)不存在.證明詳見解析.

試題分析:(1)先求導(dǎo),然后根據(jù)導(dǎo)數(shù)的性質(zhì):的解集是區(qū)間,的解集是減區(qū)間求解即可.
(2)先求導(dǎo)可得,假設(shè)存在假設(shè)存在區(qū)間,使得當(dāng)時(shí)函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033045767572.png" style="vertical-align:middle;" />,即,所以,[m,n]為增區(qū)間,
由g(m)和g(n)的值可得方程有兩個(gè)大于的相異實(shí)根,再構(gòu)造函數(shù),求,根據(jù)導(dǎo)函數(shù)的性質(zhì),求函數(shù)單調(diào)區(qū)間和極值,證明h(x)在只存在一個(gè)零點(diǎn)即可.
試題解析:(1)    1分
①當(dāng)時(shí),由恒成立,上單調(diào)遞增    2分
②當(dāng)時(shí),解得
(。┤,則
上單調(diào)遞減,在上單調(diào)遞增    4分
(ⅱ)若,則 
上單調(diào)遞增,
上單調(diào)遞減    6分
綜上所述:當(dāng)時(shí),的單調(diào)遞減區(qū)間為:,
單調(diào)遞增區(qū)間為:
當(dāng)時(shí),的單調(diào)遞減區(qū)間為:
單調(diào)遞增區(qū)間為:
當(dāng)時(shí),單調(diào)遞增區(qū)間為:.    7分
(2)由題意,    8分
假設(shè)存在區(qū)間,使得當(dāng)時(shí)函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033045767572.png" style="vertical-align:middle;" />,即,
當(dāng)時(shí),在區(qū)間單調(diào)遞增   9分
,即方程有兩個(gè)大于的相異實(shí)根    10分
設(shè),
    11分
設(shè)
,上單調(diào)增,又,即存在唯一的使.   12分
當(dāng)時(shí),為減函數(shù);當(dāng)時(shí),,為增函數(shù);處取到極小值.又   13分
只存在一個(gè)零點(diǎn),與方程有兩個(gè)大于的相異實(shí)根相矛盾,所以假設(shè)不成立,所以不存在符合題意.          14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)記函數(shù)的最小值為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),.
(1)若,則,滿足什么條件時(shí),曲線處總有相同的切線?
(2)當(dāng)時(shí),求函數(shù)的單調(diào)減區(qū)間;
(3)當(dāng)時(shí),若對(duì)任意的恒成立,求的取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=lnx-ax(a>0).
(I)當(dāng)a=2時(shí),求f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)若對(duì)于任意的x∈(0,+),都有f(x)<0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)當(dāng)有兩個(gè)極值點(diǎn)(設(shè)為)時(shí),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)(其中,e是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若,試判斷函數(shù)在區(qū)間上的單調(diào)性;
(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn),),求k的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,試證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),其中實(shí)數(shù)a為常數(shù).
(I)當(dāng)a=-l時(shí),確定的單調(diào)區(qū)間:
(II)若f(x)在區(qū)間(e為自然對(duì)數(shù)的底數(shù))上的最大值為-3,求a的值;
(Ⅲ)當(dāng)a=-1時(shí),證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=xln xg(x)=x3ax2x+2.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)對(duì)一切x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知為R上的可導(dǎo)函數(shù),當(dāng)時(shí),,則函數(shù)的零點(diǎn)分?jǐn)?shù)為(  )
A.1B.2C.0D.0或2

查看答案和解析>>

同步練習(xí)冊(cè)答案