13.橢圓$\left\{\begin{array}{l}{x=4+2cosθ}\\{y=1+5sinθ}\end{array}\right.$(θ為參數(shù))的焦距是( 。
A.$\sqrt{21}$B.2$\sqrt{21}$C.$\sqrt{29}$D.2$\sqrt{29}$

分析 把參數(shù)方程化成普通方程,根據(jù)橢圓的性質(zhì)計(jì)算焦距.

解答 解:橢圓的普通方程為$\frac{(x-4)^{2}}{4}+\frac{(y-1)^{2}}{25}=1$,
∴橢圓的焦距為2$\sqrt{25-4}$=2$\sqrt{21}$.
故選:B.

點(diǎn)評(píng) 本題考查了橢圓的參數(shù)方程與普通方程的轉(zhuǎn)化,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.對(duì)于定義在[0,+∞)上的函數(shù)f(x),若函數(shù)y=f(x)-(ax+b)滿足:①在區(qū)間[0,+∞)上單調(diào)遞減;②存在常數(shù)p,使其值域?yàn)椋?,p],則稱函數(shù)g(x)=ax+b為f(x)的“漸近函數(shù)”;
(I)證明:函數(shù) g(x)=x+1是函數(shù)f(x)=$\frac{{x}^{2}+2x+3}{x+1}$,x∈[0,+∞)的漸近函數(shù),并求此時(shí)實(shí)數(shù)p的值;
(Ⅱ)若函數(shù)f(x)=$\sqrt{{x}^{2}+1}$,x∈[0,+∞),g(x)=ax,證明:當(dāng)0<a<1時(shí),g(x)不是f(x)的漸近函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.2015年署期,某高校3名大學(xué)生計(jì)劃去學(xué)校指定的A、B、C、D4個(gè)單位做暑假工,每人選擇其中一個(gè)單位(可以去相同的單位),求選擇A單位的人數(shù)的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知A、B為橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1與雙曲線$\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{3}$=1的公共頂點(diǎn)M、N分別為橢圓和雙曲線上一點(diǎn)(異于點(diǎn)A、B),$\overrightarrow{AM}$$+\overrightarrow{BM}$=λ($\overrightarrow{AN}$$+\overrightarrow{BN}$)(λ∈R),設(shè)直線AM、BM、AN、BN的斜率分別為k1、k2、k3、k4,則k1+k2+k3+k4=( 。
A.-$\frac{3}{2}$B.0C.$\frac{3}{2}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)列{an},a1=1且3an+1-3an=1,則a301等于101.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知向量$\overrightarrow{a}$=(m,2),$\overrightarrow$=(1,n-1),若$\overrightarrow{a}$⊥$\overrightarrow$,則2m+4n的最小值為( 。
A.2B.2$\sqrt{2}$C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知圓C過點(diǎn)M(1,1),N(5,1),且圓心在直線y=x-2上,則圓C的方程為(  )
A.x2+y2-6x-2y+6=0B.x2+y2+6x-2y+6=0C.x2+y2+6x+2y+6=0D.x2+y2-2x-6y+6=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知復(fù)數(shù)z1=a+2i,z2=-2+i,且|z1|=|z2|,則實(shí)數(shù)a等于( 。
A.1B.-1C.1或-1D.±1或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,在正方形OABC內(nèi).陰影部分是由兩曲線y=$\sqrt{x}$,y=x2(0≤x≤1),在正方形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自陰影部分的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案