【題目】已知函數(shù).

(1)當時,求在區(qū)間上的最大值和最小值;

(2)若在區(qū)間上, 函數(shù)的圖象恒在直線下方, 的取值范圍;

(3)設(shè).當時, 對于任意,存在,使,實數(shù)的取值范圍.

【答案】(1)(2)(3)

【解析】

試題分析:(1)先求導數(shù),再求定義區(qū)間上的零點,列表分析單調(diào)性,比較區(qū)間端點值大小,確定函數(shù)最值(2)原題等價于在區(qū)間上恒成立.利用導數(shù)研究單調(diào)性:由于,所以根據(jù)導函數(shù)零點討論:若,在區(qū)間上是減函數(shù), ,有增有減,再結(jié)合,所以不滿足題意,只有(3)對于任意,存在,使,等價于,實際上求最值:,再變量分離得的最大值,利用導數(shù)可得的最大值,從而有

試題解析:(1)當時,,當,有;當,有,在區(qū)間上是增函數(shù), 上為減函數(shù), ,.

(2)令,則的定義域為,在區(qū)間上, 函數(shù)的圖象恒在直線下方等價于在區(qū)間上恒成立.

,令,得極值點,上有,此時在區(qū)間上是增函數(shù), 并且在該區(qū)間上有,不合題意, ,即時, 同理可知, 在區(qū)間上, ,也不合題意,

,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù), 要使在此區(qū)間上恒成立, 只須滿足,由此求得的取值范圍. 綜合 可知, 時, 函數(shù)的圖象恒在直線下方.

(3)當時, 由(2)中 上是增函數(shù), 上是減函數(shù), 所以對任意都有,又已知存在,使,即存在,使,即存在,,即存在,使.

,解得,所以實數(shù)的取值范圍.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中正確的個數(shù)是( )
①若直線l與平面α內(nèi)的一條直線垂直,則l⊥α;
②若直線l與平面α內(nèi)的兩條直線垂直,則l⊥α
③若直線l與平面α內(nèi)的兩條相交直線垂直,則l⊥α;
④若直線l與平面α內(nèi)的任意一條直線垂直,則l⊥α.
A.4
B.2
C.3
D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】梯形ABCD中,AB∥CD,AB平面α,CD平面α,則直線CD與平面α內(nèi)的直線的位置關(guān)系只能是( )
A.平行
B.平行或異面
C.平行或相交
D.異面或相交

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的上界.已知函數(shù),.

(1)當時,求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請說明理由;

(2)時,判斷函數(shù)的奇偶性并證明,并判斷是否有上界,并說明理由;

,函數(shù)上的上界是,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè),函數(shù).

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)設(shè),問是否存在極值, 若存在, 請求出極值; 若不存在, 請說明理由;

(3)設(shè)是函數(shù)圖象上任意不同的兩點, 線段的中點為,直線的斜率為.證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:對于函數(shù)fx,若存在x0,使fx0x0成立,則稱x0為函數(shù)fx的不動點。已知fxx2bxc.

1fx有兩個不動點為-3,2,求函數(shù)fx的零點.

2cb2時,函數(shù)fx沒有不動點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校100名學生期中考試數(shù)學成績的頻率分布直方圖如圖,其中成績分組區(qū)間如下:

組號

第一組

第二組

第三組

第四組

第五組

分組

(1)求圖中的值;

(2)根據(jù)頻率分布直方圖,估計這100名學生期中考試數(shù)學成績的平均分;

(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機抽取6名學生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分數(shù)不低于90分的概率?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在對人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人,女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動,男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.

(1)根據(jù)以上數(shù)據(jù)建立一個的列聯(lián)表;

(2)是否有97.5%的把握認為性別與休閑方式有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了響應(yīng)國家號召,某地決定分批建設(shè)保障性住房供給社會.首批計劃用100萬元購得一塊土地,該土地可以建造每層1 000平方米的樓房,樓房的每平方米建筑費用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費用提高20元.已知建筑第5層樓房時,每平方米建筑費用為800元.

1若建筑第x層樓時,該樓房綜合費用為y萬元綜合費用是建筑費用與購地費用之和,寫出y=fx的表達式;

2為了使該樓房每平方米的平均綜合費用最低,應(yīng)把樓層建成幾層?此時平均綜合費用為每平方米多少元?

查看答案和解析>>

同步練習冊答案