【題目】為了響應(yīng)國家號(hào)召,某地決定分批建設(shè)保障性住房供給社會(huì).首批計(jì)劃用100萬元購得一塊土地,該土地可以建造每層1 000平方米的樓房,樓房的每平方米建筑費(fèi)用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費(fèi)用提高20元.已知建筑第5層樓房時(shí),每平方米建筑費(fèi)用為800元.
(1)若建筑第x層樓時(shí),該樓房綜合費(fèi)用為y萬元(綜合費(fèi)用是建筑費(fèi)用與購地費(fèi)用之和),寫出y=f(x)的表達(dá)式;
(2)為了使該樓房每平方米的平均綜合費(fèi)用最低,應(yīng)把樓層建成幾層?此時(shí)平均綜合費(fèi)用為每平方米多少元?
【答案】(1) y=f(x)=x2+71x+100(x≥1,x∈Z) (2)10層,平均費(fèi)用為每平方米910元
【解析】
試題分析:(1)第1層樓房每平方米建筑費(fèi)用為920元,第1層樓房建筑費(fèi)用為920×1000=920000(元)=92(萬元);樓房每升高一層,整層樓建筑費(fèi)用提高20×1000=20000(元)=2(萬元);第x層樓房建筑費(fèi)用為92+(x-1)×2=2x+90(萬元);建筑第x層樓時(shí),樓房綜合費(fèi)用=建筑總費(fèi)用(等差數(shù)列前n項(xiàng)和)+購地費(fèi)用,由此可得y=f(x);(2)樓房每平方米的平均綜合費(fèi)用為g(x),則(元),代入(1)中f(x)整理,求出最小值即可
試題解析:(1)建筑第x層樓時(shí),該樓房綜合費(fèi)用為
y=f(x)=72x+×2+100=x2+71x+100,
綜上可知y=f(x)=x2+71x+100(x≥1,x∈Z).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求在區(qū)間上的最大值和最小值;
(2)若在區(qū)間上, 函數(shù)的圖象恒在直線下方, 求的取值范圍;
(3)設(shè).當(dāng)時(shí), 若對(duì)于任意,存在,使,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為,圓心在上.
(Ⅰ)若圓心也在直線上,過點(diǎn)作圓的切線,求切線的方程;
(Ⅱ)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是定義域?yàn)?/span>R的奇函數(shù).
(1)求的值;
(2)若,試判斷的單調(diào)性(不需證明),并求使不等式恒成立的t的取值范圍;
(3)若,,求在上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,過點(diǎn)的直線的傾斜角為45°,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線和曲線的交點(diǎn)為點(diǎn).
(1)求直線的參數(shù)方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若用斜二測(cè)畫法把一個(gè)高為10 cm的圓柱的底面畫在x′O′y′平面上,則該圓柱的高應(yīng)畫成( )
A. 平行于z′軸且長度為10 cm
B. 平行于z′軸且長度為5 cm
C. 與z′軸成45°且長度為10 cm
D. 與z′軸成45°且長度為5 cm
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱中,側(cè)面底面,底面為直角梯形,其中,,為中點(diǎn).
(1)求證:平面;
(2)求銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】五一節(jié)期間,某商場為吸引顧客消費(fèi)推出一項(xiàng)優(yōu)惠活動(dòng).活動(dòng)規(guī)則如下:消費(fèi)額每滿100元可轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券.(假定指針等可能地停在任一位置, 指針落在區(qū)域的邊界時(shí),重新轉(zhuǎn)一次)指針?biāo)诘膮^(qū)域及對(duì)應(yīng)的返劵金額見右下表.
例如:消費(fèi)218元,可轉(zhuǎn)動(dòng)轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.
(1)已知顧客甲消費(fèi)后獲得次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),已知他每轉(zhuǎn)一次轉(zhuǎn)盤指針落在區(qū)域邊界的概率為,每次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的結(jié)果相互獨(dú)立,設(shè)為顧客甲轉(zhuǎn)動(dòng)轉(zhuǎn)盤指針落在區(qū)域邊界的次數(shù),的數(shù)學(xué)期望,方差.求、的值;
(2)顧客乙消費(fèi)280元,并按規(guī)則參與了活動(dòng),他獲得返券的金額記為(元).求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)寫出函數(shù)的定義域和值域;
(Ⅱ)證明函數(shù)在為單調(diào)遞減函數(shù);
(Ⅲ)試判斷函數(shù)的奇偶性,并證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com