【題目】已知函數(shù)

1)若時,討論的單調(diào)性;

2)設(shè),若有兩個零點(diǎn),求的取值范圍

【答案】(1)答案不唯一,具體見解析(2)

【解析】

(1)求出函數(shù)的定義域及導(dǎo)數(shù),分類討論導(dǎo)數(shù)根的個數(shù)與符號從而求得函數(shù)的單調(diào)性;(2)求出函數(shù)及其導(dǎo)數(shù),當(dāng)時,至多有一個零點(diǎn),不符合題意;當(dāng)時,上單調(diào)遞增,在上單調(diào)遞減,要使有兩個零點(diǎn),則需大于零,從而求出的取值范圍.

1)易知的定義域為,且

對于,又,

①若時,,上是增函數(shù);

②若時,,得,

上是增函數(shù),在上是減函數(shù).

2)由,

定義域為

①當(dāng)時,恒成立,上單調(diào)遞增,則至多有一個零點(diǎn),不符合題意;

②當(dāng)時,

上單調(diào)遞增,在上單調(diào)遞減

要使有兩個零點(diǎn),則,由解得

此時

易知當(dāng)

,

,所以

,為增函數(shù),

為增函數(shù),,所以

函數(shù)各存在一個零點(diǎn)

綜上所述,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為提高市場銷售業(yè)績,設(shè)計了一套產(chǎn)品促銷方案,并在某地區(qū)部分營銷網(wǎng)點(diǎn)進(jìn)行試點(diǎn).運(yùn)作一年后,對采取促銷沒有采取促銷的營銷網(wǎng)點(diǎn)各選了50個,對比上一年度的銷售情況,分別統(tǒng)計了它們的年銷售總額,并按年銷售總額增長的百分點(diǎn)分成5組:,,,分別統(tǒng)計后制成如圖所示的頻率分布直方圖,并規(guī)定年銷售總額增長10個百分點(diǎn)及以上的營銷網(wǎng)點(diǎn)為精英店”.

采用促銷的銷售網(wǎng)點(diǎn)

不采用促銷的銷售網(wǎng)點(diǎn)

1)請根據(jù)題中信息填充下面的列聯(lián)表,并判斷是否有的把握認(rèn)為精英店與采促銷活動有關(guān);

采用促銷

無促銷

合計

精英店

非精英店

合計

50

50

100

2)某精英店為了創(chuàng)造更大的利潤,通過分析上一年度的售價(單位:元)和日銷量(單位:件)()的一組數(shù)據(jù)后決定選擇作為回歸模型進(jìn)行擬合.具體數(shù)據(jù)如下表,表中的

45.8

395.5

2413.5

4.6

21.6

①根據(jù)上表數(shù)據(jù)計算的值;

②已知該公司產(chǎn)品的成本為10/件,促銷費(fèi)用平均5/件,根據(jù)所求出的回歸模型,分析售價定為多少時日利潤可以達(dá)到最大.

附①:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

附②:對應(yīng)一組數(shù)據(jù)

其回歸直線的斜率和截距的最小二乘法估計分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中為正實(shí)數(shù).

(1)若不等式恒成立,求實(shí)數(shù)的取值范圍;

(2)當(dāng)時,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分形幾何學(xué)是數(shù)學(xué)家伯努瓦曼德爾布羅在20世紀(jì)70年代創(chuàng)立的一門新的數(shù)學(xué)學(xué)科.它的創(chuàng)立為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路.按照如圖1所示的分形規(guī)律可得如圖2所示的一個樹形圖:

易知第三行有白圈5個,黑圈4個.我們采用坐標(biāo)來表示各行中的白圈、黑圈的個數(shù).比如第一行記為,第二行記為,第三行記為.照此規(guī)律,第行中的白圈、黑圈的坐標(biāo),則________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)A為該橢圓的左頂點(diǎn),過右焦點(diǎn)的直線l與橢圓交于BC兩點(diǎn),當(dāng)軸時,三角形ABC的面積為18

求橢圓的方程;

如圖,當(dāng)動直線BC斜率存在且不為0時,直線分別交直線ABAC于點(diǎn)M、N,問x軸上是否存在點(diǎn)P,使得,若存在求出點(diǎn)P的坐標(biāo);若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面,,的中點(diǎn)

1)證明:平面

2)若是邊長為2的等邊三角形,求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖中、、、六個區(qū)域進(jìn)行染色,每個區(qū)域只染一種顏色,每個區(qū)域只染一種顏色,且相鄰的區(qū)域不同色.若有種顏色可供選擇,則共有_________種不同的染色方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某保險公司的某險種的基本保費(fèi)為(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險次數(shù)的關(guān)聯(lián)如下:

上年度出險次數(shù)

0

1

2

3

保費(fèi)(元)

隨機(jī)調(diào)查了該險種的400名續(xù)保人在一年內(nèi)的出險情況,得到下表:

出險次數(shù)

0

1

2

3

頻數(shù)

280

80

24

12

4

該保險公司這種保險的賠付規(guī)定如下:

出險序次

1

2

3

4

5次及以上

賠付金額(元)

0

將所抽樣本的頻率視為概率.

(Ⅰ)求本年度續(xù)保人保費(fèi)的平均值的估計值;

(Ⅱ)按保險合同規(guī)定,若續(xù)保人在本年度內(nèi)出險3次,則可獲得賠付元;若續(xù)保人在本年度內(nèi)出險6次,則可獲得賠付元;依此類推,求本年度續(xù)保人所獲賠付金額的平均值的估計值;

(Ⅲ)續(xù)保人原定約了保險公司的銷售人員在上午10:30~11:30之間上門簽合同,因為續(xù)保人臨時有事,外出的時間在上午10:45~11:05之間,請問續(xù)保人在離開前見到銷售人員的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)討論的單調(diào)區(qū)間;

2)證明:若,對任意的,有

查看答案和解析>>

同步練習(xí)冊答案