已知-
π
2
<x<
π
2
,sinx+cosx=
1
5
,求tanx的值.
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:將已知等式兩邊平方求出2sinxcosx的值,再利用完全平方公式列出關(guān)系式,將2sinxcosx的值代入,開方求出sinx-cosx的值,聯(lián)立求出sinx與cosx的值,即可確定出tanx的值.
解答: 解:由sinx+cosx=
1
5
,得:(sinx+cosx)2=sin2x+2sinxcosx+cos2x=1+2sinxcosx=
1
25
,
整理得:2sinxcosx=-
24
25

∴(sinx-cosx)2=sin2x-2sinxcosx+cos2x=1-2sinxcosx=
49
25
,
∵sinxcosx<0,
∴-
π
2
<x<0,
∴cosx-sinx=
7
5

又∵sinx+cosx=
1
5
,
∴cosx=
4
5
,sinx=-
3
5

∴tanx=-
3
4
點(diǎn)評(píng):此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一空的圓柱體容器直徑小于母線長(zhǎng)斜放,將容器斜放,使圓柱的母線與水平面成45°角,現(xiàn)于這種狀態(tài)下由容器的最高點(diǎn)A處勻速地灌油,如圖,則點(diǎn)A到油平面的距離y與灌水時(shí)間t的函數(shù)圖象大致為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在二項(xiàng)式(2x-3y)9展開式中,求:
(1)二項(xiàng)式系數(shù)之和;
(2)各項(xiàng)系數(shù)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲有大小相同的兩張卡片,標(biāo)有數(shù)字2,3;乙有大小相同的卡片四張,分別標(biāo)有1,2,3,4;
(1)求乙隨機(jī)抽取的兩張卡片的數(shù)字之和為奇數(shù)的概率:
(2)甲乙分別取出一張卡,比較數(shù)字,數(shù)字大者獲勝,求乙獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=4,直線l:kx-y-k-1=0
(1)判斷直線l和圓O的位置關(guān)系.
(2)求圓心到直線l的距離的最大值.
(3)如圖所示,圓O與y軸的正方向交于A點(diǎn),點(diǎn)B在直線y=2上運(yùn)動(dòng),過B做圓O的切線,切點(diǎn)為C,求△ABC垂心H的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+bx2+cx+d的圖象過點(diǎn)P(0,2),且在點(diǎn)M(-1,f(-1))處的切線方程為6x-y+7=0.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間[-3,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn=3n-1,那么該數(shù)列的通項(xiàng)公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

6個(gè)人排成一行,其中甲、乙兩人不相鄰的不同排法共有
 
種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面ABC⊥平面BDC,∠BAC=∠BDC=90°,且AB=AC=a,則AD=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案