【題目】已知, 對(duì)邊分別為,已知.

1)若的面積等于,求;

2)若,求的面積.

【答案】(1;(2

【解析】試題分析:(1)由ccosC的值,利用余弦定理列出關(guān)系式,再由三角形的面積公式,以及已知的面積與sinC的值,求出ab=4,兩關(guān)系式聯(lián)立組成方程組,求出方程組的解得到ab的值,即可判斷出三角形為等腰三角形;(2)由sinC=sinA+B),代入已知的等式中,右邊利用二倍角的正弦函數(shù)公式化簡(jiǎn),整理后分cosA=0cosA不為0兩種情況考慮,分別求出ab的值即可

試題解析:(1)由余弦定理及已知條件得, ,

又因?yàn)?/span>的面積等于,所以,得

聯(lián)立方程組解得

2)由題意得

,當(dāng)時(shí), ,

所以的面積

當(dāng)時(shí),得,由正弦定理得,

聯(lián)立方程組解得

所以的面積

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓,離心率為且過點(diǎn),過定點(diǎn)的動(dòng)直線與該橢圓相交于兩點(diǎn).

1若線段中點(diǎn)的橫坐標(biāo)是,求直線的方程;

2軸上是否存在點(diǎn),使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的兩個(gè)極值點(diǎn)為,且.

(1)求的值;

(2)若(其中上是單調(diào)函數(shù), 的取值范圍;

(3)當(dāng)時(shí), 求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1當(dāng)函數(shù)在點(diǎn)處的切線方程為,求函數(shù)的解析式;

21的條件下,若是函數(shù)的零點(diǎn),且,求的值;

3當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).(Ⅰ)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間;(Ⅱ)將的圖像向右平移個(gè)單位得到函數(shù)的圖像,若,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蛋糕店每天制作生日蛋糕若干個(gè),每個(gè)生日蛋糕的成本為50元,然后以每個(gè)100元的價(jià)格出售,如果當(dāng)天賣不完,剩下的蛋糕作垃圾處理現(xiàn)需決策此蛋糕店每天應(yīng)該制作幾個(gè)生日蛋糕,為此搜集并整理了100天生日蛋糕的日需求量單位:個(gè),得到如圖所示的柱狀圖,以100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率

1若蛋糕店一天制作17個(gè)生日蛋糕,

求當(dāng)天的利潤(rùn)單位:元關(guān)于當(dāng)天需求量單位:個(gè),的函數(shù)解析式;

在當(dāng)天的利潤(rùn)不低于750元的條件下,求當(dāng)天需求量不低于18個(gè)的概率

2若蛋糕店計(jì)劃一天制作16個(gè)或17個(gè)生日蛋糕,請(qǐng)你以蛋糕店一天利潤(rùn)的期望值為決定依據(jù),判斷應(yīng)該制作16個(gè)是17個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若某產(chǎn)品的直徑長(zhǎng)與標(biāo)準(zhǔn)值的差的絕對(duì)值不超過1mm時(shí),則視為合格品,否則視為不合格品.在近期一次產(chǎn)品抽樣檢查中,從某廠生產(chǎn)的此種產(chǎn)品中,隨機(jī)抽取5000件進(jìn)行檢測(cè),結(jié)果發(fā)現(xiàn)有50件不合格品.計(jì)算這50件不合格品的直徑長(zhǎng)與標(biāo)準(zhǔn)值的差單位:mm,將所得數(shù)據(jù)分組,得到如下頻率分布表:

數(shù)

[-3,-2

0.10

[-2,-1

8

1,2]

0.50

2,3]

10

3,4]

合計(jì)

50

1.00

1將上面表格中缺少的數(shù)據(jù)填充完整.

2估計(jì)該廠生產(chǎn)的此種產(chǎn)品中,不合格品的直徑長(zhǎng)與標(biāo)準(zhǔn)值的差落在區(qū)間1,3]內(nèi)的概率.

3現(xiàn)對(duì)該廠這種產(chǎn)品的某個(gè)批次進(jìn)行檢查,結(jié)果發(fā)現(xiàn)有20件不合格品.據(jù)此估算這批產(chǎn)品中的合格品的件數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在邊長(zhǎng)為1的等邊三角形中,分別是上的點(diǎn),,的中點(diǎn),交于點(diǎn),沿折起,得到如圖2所示的三棱錐,其中.

1求證:平面平面

2,上的中點(diǎn),中點(diǎn),求異面直線所成角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象關(guān)于直線對(duì)稱,且圖象上相鄰最高點(diǎn)的距離為

⑴求的解析式;

⑵將的圖象向右平移個(gè)單位,得到的圖象若關(guān)于的方程上有唯一解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案