【題目】已知中心在坐標(biāo)原點,焦點在軸上的橢圓,離心率為且過點,過定點的動直線與該橢圓相交于兩點.

1若線段中點的橫坐標(biāo)是,求直線的方程;

2軸上是否存在點,使為常數(shù)?若存在,求出點的坐標(biāo);若不存在,請說明理由.

【答案】12

【解析】

試題分析:1橢圓的離心率公式,及的關(guān)系,求得,得到橢圓的方程;設(shè)出直線的方程,將直線方程代入橢圓,用舍而不求和韋達(dá)定理方法表示出中點坐標(biāo),此時代入已知中點的橫坐標(biāo),即可求出直線的方程;2假設(shè)存在點,使為常數(shù),分別分當(dāng)軸不垂直時以及當(dāng)直線軸垂直時,求出點的坐標(biāo),最后綜合兩種情況得出結(jié)論.

試題解析:1易求橢圓的方程為,

直線斜率不存在時顯然不成立,設(shè)直線

代入橢圓的方程,

消去整理得,

設(shè),則,

因為線段的中點的橫坐標(biāo)為,解得

所以直線的方程為

2假設(shè)在軸上存在點,使得為常數(shù),

當(dāng)直線軸不垂直時,由1

所以

,

因為是與無關(guān)的常數(shù),從而有,

此時

當(dāng)直線軸垂直時,此時結(jié)論成立,

綜上可知,在軸上存在定點,使,為常數(shù)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點與短軸的一個端點是等邊三角形的三個頂點,且長軸長為4.

求橢圓的方程;

是橢圓的左頂點,經(jīng)過左焦點的直線與橢圓交于,兩點,求的面積之差的絕對值的最大值.為坐標(biāo)原點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)據(jù),,是杭州市100個普通職工的2016年10月份的收入均不超過2萬元,設(shè)這100個數(shù)據(jù)的中位數(shù)為,平均數(shù)為,方差為如果再加上馬云2016年10月份的收入約100億元,則相對于、,101個月收入數(shù)據(jù)

A.平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變

B.平均數(shù)大大增大,中位數(shù)可能不變,方差也不變

C.平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變

D.平均數(shù)大大增大,中位數(shù)可能不變,方差變大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一塊半徑為的正常數(shù))的半圓形空地,開發(fā)商計劃征地建一個矩形的游泳池和其附屬設(shè)施,附屬設(shè)施占地形狀是等腰,其中為圓心, 在圓的直徑上, 在半圓周上,如圖.

(1)設(shè),征地面積為,求的表達(dá)式,并寫出定義域;

(2)當(dāng)滿足取得最大值時,開發(fā)效果最佳,求出開發(fā)效果最佳的角的值,

求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果想用統(tǒng)計圖來反映各數(shù)據(jù)的變化趨勢,比較合適的統(tǒng)計圖是(

A.條形圖B.折線圖C.扇形圖D.其他圖形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為實數(shù),且,

(1)求方程的解; (2)若滿足,求證:①; (3)在(2)的條件下,求證:由關(guān)系式所得到的關(guān)于的方程存在,使

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)期間某超市搞促銷活動,當(dāng)顧客購買商品的金額達(dá)到一定數(shù)量后可以參加抽獎活動,活動規(guī)則為:從裝有個黑球, 個紅球, 個白球的箱子中(除顏色外,球完全相同)摸球.

(Ⅰ)當(dāng)顧客購買金額超過元而不超過元時,可從箱子中一次性摸出個小球,每摸出一個黑球獎勵元的現(xiàn)金,每摸出一個紅球獎勵元的現(xiàn)金,每摸出一個白球獎勵元的現(xiàn)金,求獎金數(shù)不少于元的概率;

(Ⅱ)當(dāng)購買金額超過元時,可從箱子中摸兩次,每次摸出個小球后,放回再摸一次,每摸出一個黑球和白球一樣獎勵元的現(xiàn)金,每摸出一個紅球獎勵元的現(xiàn)金,求獎金數(shù)小于元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中央電視臺電視公開課《開講了》需要現(xiàn)場觀眾,先邀請甲、乙、丙、丁四所大學(xué)的40名學(xué)生參加,各大學(xué)邀請的學(xué)生如下表所示:

大學(xué)

人數(shù)

8

12

8

12

從這40名學(xué)生中按分層抽樣的方式抽取10名學(xué)生在第一排發(fā)言席就座

1求各大學(xué)抽取的人數(shù);

21中抽取的乙大學(xué)和丁大學(xué)的學(xué)生中隨機選出2名學(xué)生發(fā)言,求這2名學(xué)生來自同一所大學(xué)的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, 對邊分別為,已知.

1)若的面積等于,求;

2)若,求的面積.

查看答案和解析>>

同步練習(xí)冊答案