已知向量
a
=(2sin(ωx+
3
),2),
b
=(2cosωx,0)(ω>0),函數(shù)f(x)=
a
b
的圖象與直線y=-2+
3
的相鄰兩個(gè)交點(diǎn)之間的距離為π.
(Ⅰ)求ω的值;
(Ⅱ)求函數(shù)f(x)在[0,2π]上的單調(diào)遞增區(qū)間.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,平面向量數(shù)量積的運(yùn)算,正弦函數(shù)的圖象
專題:計(jì)算題,三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)利用三角函數(shù)中的恒等變換應(yīng)用可求得f(x)=2cos(2ωx+
π
6
)+
3
,依題意知T=π,于是可求ω的值;
(Ⅱ)由x∈[0,2π]時(shí)⇒2x+
π
6
∈[
π
6
,
25π
6
],利用余弦函數(shù)的單調(diào)性,即可求得函數(shù)f(x)在[0,2π]上的單調(diào)遞增區(qū)間.
解答: 解:(Ⅰ)f(x)=4sin(ωx+
3
)cosωx
=4[sinωx•(-
1
2
)+cosωx•
3
2
]cosωx
=2
3
cos2ωx-2sinωxcosωx
=
3
(1+cos2ωx)-sin2ωx
=2cos(2ωx+
π
6
)+
3

由題意,T=π,ω>0,
=π,ω=1.
(Ⅱ)∵f(x)=2cos(2x+
π
6
)+
3
,
∴x∈[0,2π]時(shí),2x+
π
6
∈[
π
6
,
25π
6
],
∴2x+
π
6
∈[π,2π]或2x+
π
6
∈[3π,4π]時(shí),f(x)單調(diào)遞增,
解得x∈[
12
11π
12
]或[
17π
12
,
123π
12
],
∴f(x)的單調(diào)增區(qū)間為[
12
,
11π
12
]和[
17π
12
,
123π
12
].
點(diǎn)評(píng):本題考查三角函數(shù)中的恒等變換應(yīng)用,著重考查余弦函數(shù)的單調(diào)區(qū)間的確定,考查解不等式組的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)恰好為一個(gè)正方形的四個(gè)頂點(diǎn),則該橢圓的離心率為( 。
A、
1
3
B、
1
2
C、
3
3
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)邊長(zhǎng)分別為a,b,c,若a2+b2=2c2,則角C的最大值為( 。
A、
π
6
B、
π
4
C、
π
3
D、
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線x+
3
y-2=0被圓(x-1)2+y2=1所截得的弦長(zhǎng)為( 。
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l過(guò)點(diǎn)(1,1),交x軸,y軸的正半軸分別于A,B,過(guò)A,B作直線3x+y+3=0的垂線,垂足分別為C,D.
(1)當(dāng)AB∥CD時(shí),求CD中點(diǎn)M的坐標(biāo);
(2)當(dāng)|CD|最小時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l過(guò)點(diǎn)P(-1,2),
(1)若l的縱截距是其橫截距的一半,求直線l的一般式方程;
(2)若l的傾斜角是直線y=
3
4
x+
1
2
的傾斜角的一半,求直線l的一般式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在同一平面內(nèi)的兩個(gè)向量
a
=(
3
sinx+cos(ωx+
π
3
),-1)
,
b
=(1,1-cos(ωx-
π
3
))
,其中ω>0,x∈R.函數(shù)f(x)=
a
b
,且函數(shù)f(x)的最小正周期為π.
(1)求函數(shù)f(x)的解析式;
(2)將函數(shù)f(x)的圖象向右平移
π
6
個(gè)單位,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在[0,
π
2
]
上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l過(guò)點(diǎn)C(4,1),
(1)若直線l在兩坐標(biāo)軸上截距相等,求直線l的方程.
(2)若直線l分別與x軸、y軸的正半軸相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),記|OA|=a,|OB|=b,求a+b的最小值,并寫出此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=3x-x3上切點(diǎn)為p(2,-2)的切線方程是( 。
A、y=-9x+16
B、y=9x-20
C、y=-2
D、y=-9x+16或y=-2

查看答案和解析>>

同步練習(xí)冊(cè)答案