【題目】隨著經(jīng)濟全球化、信息化的發(fā)展,企業(yè)之間的競爭從資源的爭奪轉(zhuǎn)向人才的競爭,吸引、留住培養(yǎng)和用好人才成為人力資源管理的戰(zhàn)略目標(biāo)和緊迫任務(wù),在此背景下,某信息網(wǎng)站在15個城市中對剛畢業(yè)的大學(xué)生的月平均收入薪資和月平均期望薪資做了調(diào)查,數(shù)據(jù)如下圖所示.
(Ⅰ)若某大學(xué)畢業(yè)生從這15座城市中隨機選擇一座城市就業(yè),求該生選中月平均收入薪資高于8500元的城市的概率;
(Ⅱ)若從月平均收入薪資與月平均期望薪資之差高于1100元的城市中隨機選擇2座城市,求這2座城市的月平均期望薪資都低于8500元的概率.
【答案】(Ⅰ) (Ⅱ)
【解析】
(Ⅰ)利用古典概型的概率計算公式即可求解.
(Ⅱ)月平均收入薪資和月平均期望薪資之差高于1100元的城市有5個,其中月平均期望薪資高于8500元的有1個,記為;月平均期望薪資低于8500元的有4個,記為,,,,列出基本事件,利用古典概型的概率計算公式即可求解.
解:(Ⅰ)設(shè)該生選中月平均收入薪資高于8500元的城市為事件,
15座城市中月平均收入薪資高于8500元的有6個,
所以.
(Ⅱ)月平均收入薪資和月平均期望薪資之差高于1100元的城市有5個,
其中月平均期望薪資高于8500元的有1個,記為;
月平均期望薪資低于8500元的有4個,記為,,,.
選取兩座城市所有可能為:,,,,
,,,,,共10種;
其中2座城市的月平均期望薪資都低于8500元的有:
,,,,,,共6種;
設(shè)2座城市的月平均期望薪資都低于8500元為事件,
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對任意實數(shù),,,給出下列命題,其中真命題是( )
A.“”是“”的充要條件B.“”是“”的充分條件
C.“”是“”的必要條件D.“是無理數(shù)”是“是無理數(shù)”的充要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】質(zhì)量監(jiān)督局檢測某種產(chǎn)品的三個質(zhì)量指標(biāo),用綜合指標(biāo)核定該產(chǎn)品的等級.若,則核定該產(chǎn)品為一等品.現(xiàn)從一批該產(chǎn)品中,隨機抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:
產(chǎn)品編號 | |||||
質(zhì)量指標(biāo)() | |||||
產(chǎn)品編號 | |||||
質(zhì)量指標(biāo)() |
(1)利用上表提供的樣本數(shù)據(jù)估計該批產(chǎn)品的一等品率;
(2)在該樣品的一等品中,隨機抽取2件產(chǎn)品,設(shè)事件為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標(biāo)均滿足”,求事件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】去年年底,某商業(yè)集團公司根據(jù)相關(guān)評分細則,對其所屬25家商業(yè)連鎖店進行了考核評估.將各連鎖店的評估分數(shù)按[60,70), [70,80), [80,90), [90,100),分成四組,其頻率分布直方圖如下圖所示,集團公司依據(jù)評估得分,將這些連鎖店劃分為A,B,C,D四個等級,等級評定標(biāo)準(zhǔn)如下表所示.
評估得分 | [60,70) | [70,80) | [80,90) | [90,100) |
評定等級 | D | C | B | A |
(1)估計該商業(yè)集團各連鎖店評估得分的眾數(shù)和平均數(shù);
(2)從評估分數(shù)不小于80分的連鎖店中任選2家介紹營銷經(jīng)驗,求至少選一家A等級的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是( )
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的
C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(I)若,函數(shù)的極大值為,求實數(shù)的值;
(Ⅱ)若對任意的 在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底而為菱形,且菱形所在的平面與所在的平面相互垂直,,,,.
(1)求證:平面;
(2)求四棱錐的最長側(cè)棱的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),,其中a,.
Ⅰ求的極大值;
Ⅱ設(shè),,若對任意的,恒成立,求a的最大值;
Ⅲ設(shè),若對任意給定的,在區(qū)間上總存在s,,使成立,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,求函數(shù)在點處的切線方程;
(2)若函數(shù)存在兩個零點.
①實數(shù)的取值范圍;
②證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com