11.下列說法:①分類變量A與B的隨機變量k2越大,說明“A與B有關(guān)系”的可信度越大②以模型y=cekx去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè)z=lny,將其變換后得到線性方程z=0.3x+4,則c,k的值分別是e4和0.3③根據(jù)具有線性相關(guān)關(guān)系的兩個變量的統(tǒng)計數(shù)據(jù)所得的回歸直線方程為y=a+bx中,b=2,$\overline x=1$,$\overline y=3$,則a=1.正確的有①②③.

分析 對3個命題分別進行判斷,即可得出結(jié)論.

解答 解:①分類變量A與B的隨機變量k2越大,說明“A與B有關(guān)系”的可信度越大,正確;
②∵y=cekx,
∴兩邊取對數(shù),可得lny=ln(cekx)=lnc+lnekx=lnc+kx,
令z=lny,可得z=lnc+kx,
∵z=0.3x+4,
∴l(xiāng)nc=4,k=0.3
∴c=e4.即②正確;
③根據(jù)具有線性相關(guān)關(guān)系的兩個變量的統(tǒng)計數(shù)據(jù)所得的回歸直線方程為y=a+bx中,
b=2,$\overline x=1$,$\overline y=3$,則a=1,正確.
故答案為①②③.

點評 考查了回歸方程,對數(shù)的運算性質(zhì),隨機變量K2的概念,屬于基礎(chǔ)題型,應(yīng)理解掌握.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)=$\frac{e^x}{{{x^2}+a}}({a>0})$的兩個極值點分別為x1,x2(x1<x2),則a(lnx1+lnx2)的取值范圍是( 。
A.$[{-\frac{1}{e},0})$B.(0,+∞)C.(0,1)D.$[{-\frac{1}{e},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)y=sin(πx+φ)-2cos(πx+φ)(0<φ<π)的圖象關(guān)于點(1,0)對稱,則tanφ=( 。
A.-$\frac{1}{2}$B.-2C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.(3-2x-x4)(2x-1)6的展開式中,含x3項的系數(shù)為( 。
A.600B.360C.-600D.-360

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時間內(nèi)每個技工加工的合格零件數(shù)的統(tǒng)計數(shù)據(jù)的莖葉圖如圖所示.已知兩組技工在單位時間內(nèi)加工的合格零件平均數(shù)都為9.
(1)分別求出m,n的值;
(2)分別求出甲、乙兩組技工在單位時間內(nèi)加工的合格零件的方差s2和s2,并由此分析兩組技工的加工水平.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16. 某家電公司銷售部門共有200位銷售員,每位部門對每位銷售員都有1400萬元的年度銷售任務(wù),已知這200位銷售員去年完成銷售額都在區(qū)間[2,22](單位:百萬元)內(nèi),現(xiàn)將其分成5組,第1組,第2組,第3組,第4組,第5組對應(yīng)的區(qū)間分別為[2,6),[6,10),[10,14),[14,18),[18,22],繪制出頻率分布直方圖.
(1)求a的值,并計算完成年度任務(wù)的人數(shù);
(2)用分層抽樣從這200位銷售員中抽取容量為25的樣本,求這5組分別應(yīng)抽取的人數(shù);
(3)現(xiàn)從(2)中完成年度任務(wù)的銷售員中隨機選取2位,獎勵海南三亞三日游,求獲得此獎勵的2位銷售員在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知f(x)是奇函數(shù),且對于任意x∈R滿足f(2-x)=f(x),當(dāng)0<x≤1時,f(x)=lnx+2,則函數(shù)y=f(x)在(-2,4]上的零點個數(shù)是( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知向量$\overrightarrow{a}$=(x,3),$\overrightarrow$=(2,-2),且$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow{a}$+$\overrightarrow$|=( 。
A.5B.$\sqrt{26}$C.2$\sqrt{5}$D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}是公差不為0的等差數(shù)列,a1=1,且$\frac{1}{{a}_{1}}$,$\frac{1}{{a}_{3}}$,$\frac{1}{{a}_{9}}$成等比數(shù)列.
(1)求數(shù)列{an}的通項公式
(2)設(shè)數(shù)列{$\frac{1}{{a}_{n}•{a}_{n+2}}$}的前n項和為Tn,求證:Tn<$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊答案