3.已知全集U=R,集合A={x|x2-5x-6>0},B={x|x2-8x<0},則(∁UA)∩B=( 。
A.(0,3]B.[-1,8]C.(0,6]D.[2,3]

分析 化簡集合A、B,求出∁UA和(∁UA)∩B即可.

解答 解:全集U=R,集合A={x|x2-5x-6>0}={x|x<-1x>6},
∴∁UA={x|-1≤x≤6}=[-1,6];
又B={x|x2-8x<0}={x|0<x<8}=(0,8),
∴(∁UA)∩B=(0,6].
故選:C.

點評 本題考查了集合的化簡與運算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列三個結(jié)論:①$\root{n}{a^n}=a$;②$\sqrt{a\root{3}{a}}={a^{\frac{2}{3}}}$;③若x3=4,則x=log34.其中正確的個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖,在正方體ABCD-A1B1C1D1中,異面直線AB1與BC1所成的角為60°,二面角C1-AB-C的大小為45°.(均用度數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓的中心在坐標(biāo)原點O,焦點在x軸上,橢圓的短軸端點和焦點所組成的四邊形為正方形,兩準(zhǔn)線間的距離為4.
(1)求橢圓的方程;
(2)過點E(-1,0)且不與坐標(biāo)軸垂直的直線l交此橢圓于C,D兩點,若線段CD的垂直平分線與x軸交于點M(x0,0),求實數(shù)x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.記事件A={某人射擊一次,中靶},且P(A)=0.92,則A的對立事件是{某人射擊一次,未中靶},它的概率值是0.08.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點分別為F1,F(xiàn)2,短軸兩個端點為A,B,且四邊形F1AF2B是邊長為2的正方形.
(1)求橢圓C的方程;
(2)已知圓的方程是x2+y2=a2+b2,過圓上任一點P作橢圓C的兩條切線l1與l2,求證:l1⊥l2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.過拋物線y2=4x的焦點F作直線l與其交于A,B兩點,若|AF|=4,則|BF|=( 。
A.2B.$\frac{4}{3}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,AB是圓O的直徑,弦CD⊥AB于點M,點E是CD延長線上一點,AB=10,CD=8,3ED=4OM,EF切圓O于F,BF交CD于點G.
(1)求證:EF=EG;
(2)求線段MG的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)g(x)=(2-a)lnx,h(x)=lnx+ax2(a∈R),令f(x)=g(x)+h′(x)
(Ⅰ)當(dāng)a=0時,求f(x)的極值;
(Ⅱ)當(dāng)-3<a<-2時,若對任意λ1,λ2∈[1,3],使得|f(λ1)-f(λ2)|<(m+ln3)a-2ln3恒成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案