4.已知函數(shù)f(x)=x2+(m-1)x+m2-2,若f(x)=0的兩根一個大于-1,一個小于-1,求m的取值范圍.

分析 由題意利用二次函數(shù)的性質可得 f(-1)=m2-m<0,由此求得m的取值范圍.

解答 解:∵函數(shù)f(x)=x2+(m-1)x+m2-2,若f(x)=0的兩根一個大于-1,一個小于-1,
∴f(-1)=m2-m<0,
∴0<m<1,

點評 本題主要考查一元二次方程根的分布與系數(shù)的關系,二次函數(shù)的性質,體現(xiàn)了轉化、分類討論的數(shù)學思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.已知點Q在圓x2+y2=1上,過點Q作x軸的垂線段MQ,垂足為M,動點P滿足:$\overrightarrow{MP}=\sqrt{2}\overrightarrow{MQ}$.當點Q在圓上運動時,記動點P的軌跡為曲線Γ.
(Ⅰ)求曲線Γ的方程和焦點坐標;
(Ⅱ)過原點的直線與曲線Γ相交于A、B兩點,過點A作y軸的垂線,垂足為C,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,四邊形ABCD內接于圓O,AC與BD相交于點F,AE與圓O相切于點A,與CD的延長線相交于點E,∠ADE=∠BDC.
(Ⅰ)證明:A、E、D、F四點共圓;
(Ⅱ)證明:AB∥EF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-2{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$(其中e為自然對數(shù)的底數(shù)),則函數(shù)y=f(f(x))的零點等于e.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設a、b、c、d是4個整致,且使得m=(ab+cd)2-$\frac{1}{4}$(a2+b2-c2-d22是個非零整數(shù),求證:|m|一定是個合數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若直線l:x+y-2=0與圓C:x2+y2-2x-6y+2=0交于A、B兩點,則△ABC的面積為(  )
A.$2\sqrt{3}$B.$2\sqrt{2}$C.$2\sqrt{5}$D.$2\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知點P為線段y=2x,x∈[2,4]上任意一點,點Q為圓C:(x-3)2+(y+2)2=1上一動點,則線段|PQ|的最小值為( 。
A.$\sqrt{37}$-1B.$\frac{8\sqrt{5}}{5}$C.$\frac{8\sqrt{5}-5}{5}$D.$\sqrt{37}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,直四棱柱ABCD-A1B1C1D1中,底面ABCD是菱形,∠BAD=60°,四邊形BDD1B1是正方形.E是棱CC1的中點.
(1)求證:面BED1⊥面BDD1B1
(2)求二面角B1-AD1-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.以原點為極點,x軸的非負半軸為極軸建立極坐標系,已知曲線C1的極坐標方程為ρsin2θ=2cosθ,點B滿足2$\overrightarrow{OB}$=$\overrightarrow{OA}$,其中A在曲線C1上,點B的軌跡為曲線C2
(Ⅰ)求曲線C2的極坐標方程;
(Ⅱ)已知直線l:$\left\{\begin{array}{l}{x=2+t}\\{y=t}\end{array}\right.$(t為參數(shù))與曲線C2相交于M,N,求△MNO的面積.

查看答案和解析>>

同步練習冊答案