設(shè)等差數(shù)列的前項(xiàng)和為,且,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足 ,求的通項(xiàng)公式;
(3)求數(shù)列前 項(xiàng)和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的各項(xiàng)均是正數(shù),其前項(xiàng)和為,滿足.
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè)數(shù)列的前項(xiàng)和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
公差不為零的等差數(shù)列{}中,,又成等比數(shù)列.
(Ⅰ)求數(shù)列{}的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列{}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列滿足,且.
(1) 求數(shù)列的通項(xiàng)公式;
(2) 令,當(dāng)數(shù)列為遞增數(shù)列時(shí),求正實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知數(shù)列的前項(xiàng)和.
(1)證明:數(shù)列是等差數(shù)列;
(2)若不等式對恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足,且,
(1)當(dāng)時(shí),求出數(shù)列的所有項(xiàng);
(2)當(dāng)時(shí),設(shè),證明:;
(3)設(shè)(2)中的數(shù)列的前項(xiàng)和為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}的公差不為零,a1=25,且,,成等比數(shù)列.
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)求+a4+a7+…+a3n-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的首項(xiàng),公差,且第2項(xiàng)、第5項(xiàng)、第14項(xiàng)分別是等比數(shù)列的第2項(xiàng)、第3項(xiàng)、第4項(xiàng).
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè)數(shù)列對任意的,均有成立,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是各項(xiàng)都為正數(shù)的等比數(shù)列, 是等差數(shù)列,且,
(1)求,的通項(xiàng)公式;
(2)記的前項(xiàng)和為,求證:;
(3)若均為正整數(shù),且記所有可能乘積的和,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com