函數(shù)f(x)=
2ex+1
ex+1
,g(x)=ln(x+
1+x2
).
(1)求證:對任意實(shí)數(shù)x,f(x)+f(-x)與g(x)+g(-x)均為定值;
(2)令F(x)=f(x)+g(x),試說明F(x)的單調(diào)性,再求F(x)在區(qū)間[-3,3]的最大值與最小值之和.
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:計(jì)算題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)化簡可得f(x)+f(-x)=
2ex+1
ex+1
+
2e-x+1
e-x+1
=
2ex+1
ex+1
+
2+ex
ex+1
=3;g(x)+g(-x)=0;
(2)求導(dǎo)F′(x)=
ex
(ex+1)2
+
1
1+x2
>0,故為增函數(shù),從而求最值.
解答: 解:(1)證明:f(x)+f(-x)=
2ex+1
ex+1
+
2e-x+1
e-x+1

=
2ex+1
ex+1
+
2+ex
ex+1
=3;
g(x)+g(-x)=ln(x+
1+x2
)+ln(-x+
1+x2

=ln(1+x2-x2)=0.
故對任意實(shí)數(shù)x,f(x)+f(-x)與g(x)+g(-x)均為定值.
(2)F(x)=f(x)+g(x)=
2ex+1
ex+1
+ln(x+
1+x2
),
F′(x)=
ex
(ex+1)2
+
1
1+x2
>0,
故F(x)在其定義域上是增函數(shù),
F(x)max+F(x)min=f(-3)+g(-3)+f(3)+g(3)=3.
點(diǎn)評:本題考查了函數(shù)的性質(zhì)的應(yīng)用,同時考查了導(dǎo)數(shù)的綜合應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-1
2x+1

(1)判斷函數(shù)f(x)的奇偶性,并證明.
(2)求函數(shù)f(x)的單調(diào)性及值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若{1,a,
b
a
}={0,a2,a+b},則a2015+b2014的值為( 。
A、1或-1B、0C、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2=25π,則圓心角30°所對的弧長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx+x2+ax(a∈R)
(1)若函數(shù)f(x)有一個極大值和極小值點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)已知A(x1,f(x1))B(x2,f(x2)(x1≠x2)是函數(shù)f(x)在x∈[1,+∞)的圖象上的任意兩點(diǎn),且滿足
f(x1)-f(x2)
x1-x2
>2,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中正確的是
 
.(填序號)
①“m>5”是“
x2
5-m
-
y2
1-m
=1表示雙曲線”的充分不必要條件;
②已知P為雙曲線
x2
25
-
y2
16
=1上一點(diǎn),F(xiàn)1,F(xiàn)2分別為雙曲線的左,右焦點(diǎn),若|PF1|=11,則|PF2|=21或1;
③若在雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)右支上存在點(diǎn)P滿足|PF1|=3|PF2|,則雙曲線的離心率的范圍是(1,2];
④直線3x-4y-4=0與雙曲線
x2
16
-
y2
9
=1有兩個不同的交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知長方體ABCD-A1B1C1D1中,AB=4
3
,AD=4
3
,AA1=4,求:
(1)A1B與DC所成的角;
(2)A1C1與AD所成的角;
(3)AC1與DD1所成的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知t>0,設(shè)函數(shù)f(x)=x3-
3(t+1)
2
x2
+3tx+1.
(Ⅰ)若f(x)在(0,2)上無極值,求t的值;
(Ⅱ)若存在x0∈(0,2),使得f(x0)是f(x)在[0,2]上的最大值,求t的取值范圍;
(Ⅲ)若f(x)≤xex-m+2(e為自然對數(shù)的底數(shù))對任意x∈[0,+∞)恒成立時m的最大值為1,求t的取
值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系這個xOy中,橢圓C的標(biāo)準(zhǔn)方程為
x2
a2
+
y2
b2
=1(a>b>0,c=
a2-b2
),右焦點(diǎn)為F,直線L:x=
a2
c
,短軸的一個端點(diǎn)為B,設(shè)原點(diǎn)到直線BF的距離為d1,F(xiàn)到L的距離為d2,若d2=
6
d1,則橢圓C的離心率是
 

查看答案和解析>>

同步練習(xí)冊答案