已知數(shù)列{an}是公差不為零的等差數(shù)列,a1=1,且2a2+2=a4
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)bn=
1
anan+1
,求數(shù)列{bn}的前n項(xiàng)和Sn
考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)設(shè)等差數(shù)列{an}的公差,由題意求得公差,則等差數(shù)列的通項(xiàng)公式可求;
(2)把等差數(shù)列的通項(xiàng)公式代入bn=
1
anan+1
,然后利用裂項(xiàng)相消法求數(shù)列的前n項(xiàng)和.
解答: 解:(1)設(shè)等差數(shù)列{an}的公差為d(d≠0),
由a1=1,且2a2+2=a4,得2(1+d)+2=1+3d,
解得:d=3.
∴an=1+3(n-1)=3n-2;
(2)由bn=
1
anan+1
,得
bn=
1
(3n-2)(3n+1)
=
1
3
(
1
3n-2
-
1
3n+1
)
,
∴數(shù)列{bn}的前n項(xiàng)和Sn=
1
3
(
1
1
-
1
4
+
1
4
-
1
7
+…+
1
3n-2
-
1
3n+1
)

=
1
3
(1-
1
3n+1
)=
n
3n+1
點(diǎn)評(píng):本題考查了等差數(shù)列的通項(xiàng)公式,考查了裂項(xiàng)相消法求數(shù)列的和,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(2x)=x2-2x,則f(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右頂點(diǎn)A作斜率為-1的直線與橢圓的另一個(gè)交點(diǎn)為M,與y軸的交點(diǎn)為B,若|AM|=|MB|則橢圓的離心率為( 。
A、
6
2
B、
2
3
C、
6
3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某公司生產(chǎn)一種產(chǎn)品,每年需投入預(yù)定成本60萬(wàn)元,此外每生產(chǎn)1萬(wàn)件產(chǎn)品需要增加投資35萬(wàn)元,經(jīng)預(yù)測(cè)知,市場(chǎng)對(duì)這種產(chǎn)品的需求量為5萬(wàn)件,且當(dāng)售出的這種產(chǎn)品的數(shù)量為t(單位:萬(wàn)件)時(shí),銷售所得的收入約為500t-50t2(萬(wàn)元).
(1)若該公司這種產(chǎn)品的年產(chǎn)量為x(單位:萬(wàn)件,x>0),試把該公司生產(chǎn)銷售這種產(chǎn)品所得的年利潤(rùn)表示為當(dāng)年產(chǎn)量x的函數(shù).
(2)當(dāng)該公司的年產(chǎn)量為多大時(shí),當(dāng)年所得的利潤(rùn)最大?并求出當(dāng)年所得利潤(rùn)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x+1
x2+1
的值域?yàn)?div id="aim1lgw" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方體A1B1C1D1-ABCD中,E,F(xiàn)分別為A1D與D1C的中點(diǎn).
(Ⅰ)證明:EF∥平面ABCD;
(Ⅱ)證明:DD1⊥EF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1
的離心率e=
2
3
,A、B是橢圓上關(guān)于x、y軸均不對(duì)稱的兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)P(1,0).
(1)設(shè)AB的中點(diǎn)為C(x0,y0),求x0的值;
(2)若F是橢圓的右焦點(diǎn),且AF+BF=3,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(-2,-3)和以Q為圓心的圓(x-4)2+(y-2)2=9.
(1)求以PQ為直徑,Q′為圓心的圓的方程;
(2)以Q為圓心的圓和以Q′為圓心的圓的兩個(gè)交點(diǎn)A,B,直線PA,PB是以Q為圓心的圓的切線嗎?為什么?
(3)求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=lg(3-4sin2x)的定義域和值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案