已知函數(shù)f(x)=
3
sinωx•cosωx-cos2ωx(ω>0)最小正周期為
π
2

(Ⅰ)求ω的值及函數(shù)f(x)的解析式;
(Ⅱ)若△ABC的三條邊a,b,c滿足a2=bc,a邊所對的角為A.求角A的取值范圍及函數(shù)f(A)的值域.
考點:三角函數(shù)中的恒等變換應用,余弦定理
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質,解三角形
分析:(I)化簡解析式可得f(x)=sin(2ωx-
π
6
)-
1
2
.由
=
π
2
,可得ω的值,從而可求函數(shù)f(x)的解析式;
(II)由余弦定理可得cosA=
b2+c2-a2
2bc
1
2
,又0<A≤
π
3
,可得-
π
6
<4A-
π
6
6
,從而可求函數(shù)f(A)的值域.
解答: 解:(I)f(x)=
3
sinωx•cosωx-cos2ωx=
3
2
sin2ωx-
1
2
cos2ωx-
1
2
=sin(2ωx-
π
6
)-
1
2

=
π
2
,得ω=2.…(3分)
函數(shù)f(x)=sin(4x-
π
6
)-
1
2
.…(5分)
(II)因為cosA=
b2+c2-a2
2bc
=
b2+c2-bc
2bc
2bc-bc
2bc
=
1
2
. …(8分)
而A為三角形內角,所以0<A≤
π
3
.….(10分)
所以-
π
6
<4A-
π
6
6
,-
1
2
≤sin(4x-
π
6
)≤1,
即-1≤f(A)
1
2
.…(12分)
點評:本題主要考察了三角函數(shù)中的恒等變換應用,三角函數(shù)的圖象與性質,余弦定理的應用,屬于基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

黃種人群中各種血型的人所占的比例如下表所示:
血型ABABO
該血型的人所占的比例(%)28%29%8%35%
若按如下原則輸血,同種血型的人可以輸血,O型血可以輸給任何一種血型的人,任何血型的人血都可以輸給AB型血的人,其他不同血型的人不能互相輸血,問:
(1)任找一個人,其血可以輸給B型血病人的概率是多少?
(2)任找一個人,其血可以輸給A型血病人或B型血病人的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某人根據(jù)自己愛好,希望從{W,X,Y,Z}中選2個不同字母,從{0,2,6,8}中選3個不同數(shù)字擬編車牌號,要求前三位是數(shù)字,后兩位是字母,且數(shù)字2不能排在首位,字母Z和數(shù)字2不能相鄰,那么滿足要求的車牌號有(  )
A、198個B、180個
C、216個D、234個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對角邊分別為a,b,c,B=
π
3
,cosA=
4
5
,b=
3

(1)求sinC的值
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=(sinx+cosx)sinx,若f(x1)≤f(x)≤f(x2),對?x∈R成立,則|x1-x2|最小值為( 。
A、
π
8
B、
π
4
C、
π
2
D、π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P、Q是兩個非空集合,定義集合間的一種運算“⊙“:P⊙Q={x|x∈P∪Q,且x∉P∩Q}如果P={x|-2≤x≤2},Q={x|x>1},則P⊙Q=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x),若對給定的△ABC,它的三邊的長a,b,c均在函數(shù)f(x)的定義域內,且f(a),f(b),f(c)也為某三角形的三邊的長,則稱f(x)是“保三角形函數(shù)”,給出下列命題:
①函數(shù)f(x)=x2+1是“保三角形函數(shù)”;
②函數(shù)f(x)=
x
(x>0)是“保三角形函數(shù)”;
③若函數(shù)f(x)=kx是“保三角形函數(shù)”,則實數(shù)k的取值范圍是(0,+∞);
④若函數(shù)f(x)是定義在R上的周期函數(shù),值域為(0,+∞),則f(x)是“保三角形函數(shù)”.
其中所有真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù)f(1)=0,當x>0時,有
xf′(x)-f(x)
x2
>0成立,則不等式f(x)>0的解集是( 。
A、(1,+∞)
B、(-1,0)
C、(-1,0)∪(1,+∞)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知梯形ABCD中,AB∥CD,∠B=
π
2
,DC=2AB=2BC=2,以對角線AC為旋轉軸旋轉一周得到的幾何體的表面積為(  )
A、2(1+
2
)π
B、2
2
π
C、
2
2
3
π
D、(3+2
2
)π

查看答案和解析>>

同步練習冊答案