本小題滿分13分)
如圖,已知ABCD是邊長為2的正方形,
平面ABCD,
平面ABCD,且FB=2DE=2。
(1)求點E到平面FBC的距離;
(2)求證:平面
平面AFC。
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
頂點
的坐標為
,
,
.
(
1)求點
到直
線
的距離
及
的面積
;
(2)求
外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖所示,五面體ABCDE中,正
ABC的邊長為1,AE
平面ABC,CD∥AE,且CD=
AE.
(I)設(shè)CE與平面ABE所成的角為
,AE=
若
求
的取值范圍;
(Ⅱ)在(I)和條件下,當
取得最大值時,求平面BDE與平面ABC所成角的大。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知PA
面ABC,AB
BC,若PA=AC=2,AB=1
(1)求證:面PAB
面PBC; (2)求二面角A-PC-B的正弦值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在三棱錐P-ABC內(nèi),已知PA=PC=AC=,AB=BC=1,面PAC⊥面ABC,E是BC的中點.
(1)求直線PE與AC所成角的余弦值;
(2)求直線PB與平面ABC所成的角的正弦值;
(3)求點C到平
面PAB的距
離.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐
P-
ABCD中,
PD⊥平面
ABCD,
AD⊥
CD,
DB平分∠
ADC,
E為
PC的中點,
AD=
CD=1,
DB=2.
(1)證明
PA∥平面
BDE;
(2)證明
AC⊥平面
PBD;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖1,在平面內(nèi),ABCD
是
且
的菱形,
和
都是正方形。將兩個正方形分別沿AD,CD折起,使
與
重合于點D1。設(shè)直線l過點B且垂直于菱形ABCD所在的平面,點E是直線l上的一個動點,且與點D1位于平面ABCD同側(cè),設(shè)
(圖2)。
(1)設(shè)二面角E – AC – D1的大小為q,若
,求
的取值范圍;
(2)在線段
上是否存在點
,使平面
平面
,若存在,求出
分
所成的比
;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在三棱柱
ABC-
A1B1C1中,側(cè)
面
AA1B1B是邊長為2的正方形,點
C在平面
AA1B1B上的射影
H恰好為
A1B的中點,且
CH=
,設(shè)
D為
中點,
(Ⅰ)求證:
平面
;
(Ⅱ)求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)
如圖,已知四棱錐
的底面為矩形,
且
平面
分別為
的中點.
(Ⅰ)求證:
;
(Ⅱ)求二面角
的大小值.
查看答案和解析>>