【題目】函數(shù)f(x)=x3﹣3x﹣1,若對(duì)于區(qū)間[﹣3,2]上的任意x1 , x2 , 都有|f(x1)﹣f(x2)|≤t,則實(shí)數(shù)t的最小值是

【答案】20
【解析】解:對(duì)于區(qū)間[﹣3,2]上的任意x1 , x2都有|f(x1)﹣f(x2)|≤t, 等價(jià)于對(duì)于區(qū)間[﹣3,2]上的任意x,都有f(x)max﹣f(x)min≤t,
∵f(x)=x3﹣3x﹣1,∴f′(x)=3x2﹣3=3(x﹣1)(x+1),
∵x∈[﹣3,2],
∴函數(shù)在[﹣3,﹣1]、[1,2]上單調(diào)遞增,在[﹣1,1]上單調(diào)遞減
∴f(x)max=f(2)=f(﹣1)=1,f(x)min=f(﹣3)=﹣19
∴f(x)max﹣f(x)min=20,
∴t≥20
∴實(shí)數(shù)t的最小值是20,
故答案為:20.
對(duì)于區(qū)間[﹣3,2]上的任意x1 , x2都有|f(x1)﹣f(x2)|≤t,等價(jià)于對(duì)于區(qū)間[﹣3,2]上的任意x,都有f(x)max﹣f(x)min≤t,利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性,求最值,即可得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b是正數(shù),且a≠b,比較a3+b3與a2b+ab2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集I={0,1,2,3,4},集合M={1,2,3},N={0,3,4},則(IM)∩N=(
A.
B.{3,4}
C.{1,2}
D.{0,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+mx2+(m+6)x+1既存在極大值又存在極小值,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)偶函數(shù)f(x)滿足f(x)=2x﹣4(x≥0),則{x|f(x﹣2)>0}=(
A.{x|x<﹣2或x>4}
B.{x|x<0或x>4}
C.{x|x<0或x>6}
D.{x|x<﹣2或x>2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2+2xf′(1),則f′(0)等于(
A.0
B.﹣2
C.﹣4
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合U=R,A={x|x≥2},B={x|x<﹣1},則U(A∩B)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A,B,C,D,E五人并排站成一排,如果A,B必須相鄰且B在A的右邊,那么不同的排法共有(
A.60種
B.48種
C.36種
D.24種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x∈Z||x|<4},B={x|x﹣1≥0},則A∩B等于(
A.(1,4)
B.[1,4)
C.{1,2,3}
D.{2,3,4}

查看答案和解析>>

同步練習(xí)冊(cè)答案