拋物線x2=-2y的準(zhǔn)線方程是( 。
A、y=
1
8
B、y=-
1
8
C、y=-
1
2
D、y=
1
2
考點:拋物線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:先根據(jù)拋物線的標(biāo)準(zhǔn)方程得到焦點在y軸上以及2p,再直接代入即可求出其準(zhǔn)線方程.
解答: 解:因為拋物線的標(biāo)準(zhǔn)方程為:x2=-2y,焦點在y軸上;
所以:2p=2,即p=1,
所以:
p
2
=
1
2
,
所以準(zhǔn)線方程y=
1
2

故選:D.
點評:本題主要考查拋物線的基本性質(zhì).解決拋物線的題目時,一定要先判斷焦點所在位置.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n3,則
1
2
(a1+a10)•10的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:
x=1=cosφ
y=sinφ
(φ為參數(shù))與直線l:
x=3-2t
y=2-t
(t為參數(shù)),相交于A、B兩點,則|AB|=( 。
A、
2
5
5
B、
5
5
C、
2
3
5
D、
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,AC與A1D的夾角為( 。
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記等差數(shù)列{an}的前n項和為Sn,如果已知a5+a21的值,我們可以求得(  )
A、S23的值
B、S24的值
C、S25的值
D、S26的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)是定義在R上的可導(dǎo)函數(shù),且滿足(x-1)f′(x)≥0,則必有( 。
A、f(0)+f(2)<2f(1)
B、f(0)+f(2)>2f(1)
C、f(0)+f(2)≤2f(1)
D、f(0)+f(2)≥2f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x∈R,向量
a
=(x,-1),
b
=(1,2),
c
(4,-2),且
a
c
,則|
a
-
b
|=( 。
A、
5
B、
10
C、2
5
D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項公式為an=2n,則該數(shù)列的前n項和Sn=( 。
A、2n-1
B、2n-2
C、2n+1-1
D、2n+1-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:x≠1或y≠2,命題q:x+y≠3,則命題p是q的(  )
A、充分不必要
B、必要不充分
C、充要條件
D、既不充分也不必要

查看答案和解析>>

同步練習(xí)冊答案