若兩個(gè)函數(shù)的圖象經(jīng)過若干次平移后能夠重合,則稱這兩個(gè)函數(shù)為“同形”函數(shù).給出下列三個(gè)函數(shù):f1(x)=sinx+cosx,f2(x)=
2
sinx+
2
,f3(x)=sinx,試寫出一對“同形”函數(shù)是
 
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:利用三角函數(shù)的平移的法則可知函數(shù)f1(x)=
2
sin(x+
π
4
)先向右平移
π
4
個(gè)單位得f1(x)=
2
sinx,再向上平移
2
個(gè)單位得到函數(shù)f(x)=
2
sinx+
2
,這一函數(shù)正好與②中的函數(shù)重合.
解答: 解:①f1(x)=sinx+cosx=
2
sin(x+
π
4
)先向右平移
π
4
個(gè)單位得f1(x)=
2
sinx,再向上平移
2
個(gè)單位得到函數(shù)②f2(x)=
2
sinx+
2
,這一函數(shù)正好與②中的函數(shù)重合.
故答案為:f1(x)=sinx+cosx,f2(x)=
2
sinx+
2
點(diǎn)評(píng):本題主要考查了三角函數(shù)的圖象的變換.考查了學(xué)生對三角函數(shù)基礎(chǔ)知識(shí)的掌握的熟練程度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在底面半徑和高均為1的圓錐中,AB、CD是底面圓O的兩條互相垂直的直徑,E是母線PB的中點(diǎn),已知過CD與E的平面與圓錐側(cè)面的交線是以E為頂點(diǎn)的拋物線的一部分,則該拋物線的焦點(diǎn)到圓錐頂點(diǎn)P的距離為(  )
A、1
B、
2
4
C、
6
2
D、
10
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一長為18cm的線段隨機(jī)地分成三段,則這三段能組成一個(gè)三角形的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過橢圓
x2
4
+
y2
3
=1右焦點(diǎn)作傾斜角為45°的弦AB,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=2an-n(n∈N+).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=(2n+1)(an+1),數(shù)列{bn}的前n項(xiàng)為Tn,求滿足不等式
Tn-2
2n-1
≥2的最小的n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的焦點(diǎn)F1(0,-4)和F2(0,4),長軸長10,又雙曲線D與橢圓C共焦點(diǎn),它們的離心率之和為
14
5
,試求:
(1)橢圓的方程;
(2)雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x2+5x-6,求:
(1)y=f(x)的圖象與x軸交點(diǎn)的橫坐標(biāo)x的集合;
(2)y=f(x)的圖象在x軸上方時(shí)橫坐標(biāo)x的集合;
(3)y=f(x)的圖象恒在直線y=a+1下方時(shí)橫坐標(biāo)x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖點(diǎn)P在正方體ABCD-A1B1C1D1的面對角線BC1上運(yùn)動(dòng),則下列命題:
①DP⊥BC1;
②三棱錐A-D1PC的體積不變;
③面PDB1⊥面ACD1;
④A1P∥面ACD1
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校從參加考試的學(xué)生中抽出40名學(xué)生,將其成績(均為整數(shù))分成六組[40,50),[50,60)…[90,100]后畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

(Ⅰ)求成績落在[80,90)上的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(Ⅱ)估計(jì)這次考試的及格率(60分及以上為及格)和平均分;
(Ⅲ)從成績是80分以上(包括80分)的學(xué)生中選兩人,求他們在同一分?jǐn)?shù)段的概率.

查看答案和解析>>

同步練習(xí)冊答案