某校從參加考試的學(xué)生中抽出40名學(xué)生,將其成績(均為整數(shù))分成六組[40,50),[50,60)…[90,100]后畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

(Ⅰ)求成績落在[80,90)上的頻率,并補(bǔ)全這個頻率分布直方圖;
(Ⅱ)估計(jì)這次考試的及格率(60分及以上為及格)和平均分;
(Ⅲ)從成績是80分以上(包括80分)的學(xué)生中選兩人,求他們在同一分?jǐn)?shù)段的概率.
考點(diǎn):列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率,頻率分布直方圖
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)根據(jù)頻率分布直方圖,用1減去成績落在其它區(qū)間上的頻率,即得成績落在[80,90)上的頻率,從而補(bǔ)全頻率分步直方圖.
(Ⅱ) 先根據(jù)頻率分布直方圖,用1減去成績落在[40,50),[50,60)上的頻率,即可得到這次考試的及格率.
(Ⅲ)先求出成績是80分以上的人數(shù),再分別求得成績落在區(qū)間[80,90)、[90,100]上的人數(shù),即可求得他們在同一分?jǐn)?shù)段的概率.
解答: 解:(Ⅰ)1-(0.01+0.02+0.025+0.03+0.005)×10=0.2,
故成績落在[70,80)上的頻率是0.3,頻率分布直方圖如下圖.

(Ⅱ) 估計(jì)這次考試的及格率(60分及以上為及格)為1-0.01×10-0.02×10=70%,
平均分:45×0.1+55×0.20+65×0.25+75×0.3+85×0.20+95×0.05=76.
(Ⅲ)成績是80分以上的人數(shù)為 40×10×(0.02+0.005)=40×0.25=10.
其中,成績落在區(qū)間80,90)、[90,100]上的人數(shù)分別為40×0.2=8,40×0.05=2,
故從中選兩人,他們在同一分?jǐn)?shù)段的概率為
C
2
8
+
C
2
2
C
2
10
=
29
45
點(diǎn)評:本題主要考查頻率分布直方圖、用樣本估計(jì)總體、等可能事件的概率,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若兩個函數(shù)的圖象經(jīng)過若干次平移后能夠重合,則稱這兩個函數(shù)為“同形”函數(shù).給出下列三個函數(shù):f1(x)=sinx+cosx,f2(x)=
2
sinx+
2
,f3(x)=sinx,試寫出一對“同形”函數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)∫f(x)dx=x2e2x+C,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2+
1
2
x,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)若函數(shù)g(x)=
4x
4x+2
,令bn=g(
an
2015
)(n∈N*)求數(shù)列{bn}的前2014項(xiàng)的和T2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},an=pn+λqn(p>0,q>0,p≠q,λ∈R,λ≠0,m∈N*).
(1)求證:數(shù)列{an+1-pan}為等比數(shù)列;
(2)數(shù)列{an}中,是否存在連續(xù)的三項(xiàng),這三項(xiàng)構(gòu)成等比數(shù)列?試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=8,a4=2,且滿足an+2-2an+1+an=0(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn;
(Ⅱ)設(shè)Tn=|a1|+|a2|+|a3|+…+|an|,求T10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(α-β)=
2
5
,tan(α+β)=
1
4
,則tan2α的值是( 。
A、
13
18
B、
13
22
C、
1
6
D、
3
22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡sin(α-β)cosβ+cos(α-β)sinβ的結(jié)果為( 。
A、1B、sinα
C、cosαD、sinαcosβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

使不等式23x-1>1成立的x的取值為(  )
A、(
2
3
,+∞)
B、(1,+∞)
C、(
1
3
,+∞)
D、(-
1
3
,+∞)

查看答案和解析>>

同步練習(xí)冊答案