已知函數(shù)x,y滿足|x+6|+(y-4)2=0,則x+y=
 
考點(diǎn):函數(shù)的零點(diǎn)
專題:函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:本題利用已知函數(shù)的最值和不等式取等號(hào)的條件,得到參數(shù)x、y的值,得到本題結(jié)論.
解答: 解:∵|x+6|≥0,當(dāng)且僅當(dāng)x=-6時(shí)取等號(hào),
(y-4)2≥0,當(dāng)且僅當(dāng)y=4時(shí)取等號(hào),
∴|x+6|+(y-4)2≥0,
當(dāng)且僅當(dāng)x=-6,y=4時(shí)取等號(hào).
∵函數(shù)x,y滿足|x+6|+(y-4)2=0,
∴x=-6,y=4,
∴x+y=-2.
故答案為:-2.
點(diǎn)評(píng):本題考查了函數(shù)的最值和不等式取等號(hào)的條件,本題難度不大,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a、b為實(shí)數(shù),則下列不等式中成立的是( 。
A、a>b,則
1
a
1
b
B、a<b,則
1
a
1
b
C、
1
a
1
b
>0,則b>a
D、
1
a
1
b
>0,則b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=3,|
b
|=4,
a
b
的夾角為60°,則|
a
+
b
|=( 。
A、
3
B、
5
C、37
D、
37

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列敘述中正確的是( 。
A、命題“若x=
π
6
,則sinx=
1
2
”的逆命題為真命題
B、設(shè)a,b是實(shí)數(shù),則“a>b”是“a2>b2”的充分而不必要條件
C、命題“?x∈R使得x2+x+1<0”的否定是:“?x∈R,都有x2+x+1>0”
D、函數(shù)f(x)=lnx+x-
3
2
在區(qū)間(1,2)上有且僅有一個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程ax2-(2a-2)x+a+1=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求a的取值范圍;
(2)是否存在實(shí)數(shù)a,使此方程的兩個(gè)根的倒數(shù)和等于0?若存在,求出a的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)θ∈(
π
6
,
π
3
),且17θ的終邊與角θ的終邊相同,則tanθ 等于(  )
A、
2
-1
B、
2
C、
2
+1
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an},a1=1,a3=5,則an=( 。
A、2n-1B、n
C、n+2D、2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U={1,2,3,4,5},A={1,2,3},B={2,3,4},則∁U(A∩B)=( 。
A、{1,2,3}
B、{1,2,4}
C、{2,3,4}
D、{1,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(3,4),向量
b
滿足|
a
-
b
|=3,則|
b
|的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案