如圖,在做擲飛鏢游戲時(shí),靶心的高度為1.8米,各靶圈是半徑分別是10厘米、20厘米、30厘米的同心圓,分別對(duì)應(yīng)第10、9、8環(huán).?dāng)S鏢人高1.8米,投擲點(diǎn)在高于頭頂20厘米處,人離靶7米,且飛鏢在離人3米處達(dá)到最大高度2.4米.假定飛鏢總不偏離與靶心所在的平面,問該飛鏢能否中靶?若中靶,是第幾環(huán)?
考點(diǎn):拋物線的應(yīng)用
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:以地面做所在直線為x軸,以飛鏢最高點(diǎn)過的位置為y軸,建立直角坐標(biāo)系,求出飛鏢的運(yùn)動(dòng)軌跡對(duì)應(yīng)的拋物線方程,令x=-4,解得落在靶子上離地高度,即可得出結(jié)論.
解答: 解:以地面做所在直線為x軸,以飛鏢最高點(diǎn)過的位置為y軸,建立直角坐標(biāo)系,
設(shè)飛鏢的運(yùn)動(dòng)軌跡對(duì)應(yīng)的拋物線方程為y=ax2+3(a<0),
依題意,飛鏢拋物時(shí)刻的坐標(biāo)為A(3,2),代入到以上方程,解得a=-
1
9

即拋物線的方程為:y=-
1
9
x2+3,
再令x=-4,解得y=
11
9
≈1.22米,即落在靶子上離地高度為1.22米,
根據(jù)題意,靶心以下各環(huán)的高度范圍:1.7米~1.8米為10環(huán),1.5米~1.7米為9環(huán),1.2米~1.5米為8環(huán),
故飛鏢打中8環(huán).
點(diǎn)評(píng):本題考查拋物線的運(yùn)用,考查利用數(shù)學(xué)知識(shí)解決實(shí)際問題,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果執(zhí)行如圖的程序框圖,那么輸出的值是( 。
A、2016
B、2
C、
1
2
D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn)或求值:
①sin(x-y)siny-cos(x-y)cosy=
 

②sin70°cos10°-sin20°sin170°=
 

③cosα-
3
sinα=
 

1+tan15°
1-tan15°
=
 

⑤tan65°-tan5°=
 

⑥sin15°cos15°=
 

⑦sin2
θ
2
-cos2
θ
2
 

⑧2cos222.5°-1=
 

2tan150°
1-tan2150°
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x•lnx,g(x)=ax3-
1
2
x-
2
3e

(1)求f(x)的單調(diào)增區(qū)間和最小值;
(2)若函數(shù)y=f(x)與函數(shù)y=g(x)在交點(diǎn)處存在公共切線,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正視圖,側(cè)視圖,俯視圖都是這樣,則該幾何體表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是等差數(shù)列{an}的前n項(xiàng)和,數(shù)列{bn}是等比數(shù)列,b1=
1
2
,a5-1恰為S4
1
b2
的等比中項(xiàng),圓C:(x-2n)2+(y-
Sn
2=2n2,直線l:x+y=n,對(duì)任意n∈N*,直線l都與圓C相切.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若對(duì)任意n∈N*,cn=anbn,求{cn}的前n項(xiàng)和Tn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的參數(shù)方程為
x=cosθ
y=1+sinθ
(θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsinθ=1,求直線l與圓C的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)任意實(shí)數(shù)x∈R,求證:x2+10>6x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-2sin(2x-
3
).
(1)求出它的初相和對(duì)稱中心;
(2)用“五點(diǎn)法”畫出f(x)在一個(gè)周期內(nèi)的圖象.

查看答案和解析>>

同步練習(xí)冊(cè)答案