已知圓C的參數(shù)方程為
x=cosθ
y=1+sinθ
(θ為參數(shù)),以原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρsinθ=1,求直線l與圓C的交點坐標.
考點:參數(shù)方程化成普通方程
專題:坐標系和參數(shù)方程
分析:首先把圓的參數(shù)方程轉(zhuǎn)化成直角坐標方程,進一步把直線的極坐標方程轉(zhuǎn)化成直角坐標方程,最后建立方程組求出交點的坐標.
解答: 解:圓C的參數(shù)方程為
x=cosθ
y=1+sinθ
(θ為參數(shù)),
轉(zhuǎn)化成直角坐標方程為:x2+(y-1)2=1
直線l的極坐標方程為ρsinθ=1,
轉(zhuǎn)化成直角坐標方程為:y=1.
則:
x2+(y-1)2=1
y=1

解得:
x=-1
y=1
x=1
y=1

所以:直線l與圓的交點坐標為:(-1,1)和(1,1)
點評:本題考查的知識要點:圓的參數(shù)方程與直角坐標方程的互化,直線的極坐標方程與直角坐標方程的互化,直線與圓的交點坐標,屬于基礎題型.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若a,b∈R,且4≤a2+b2≤9,則a2-ab+b2的范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y之間的一組數(shù)據(jù):
x1234567
y2.93.33.64.44.85.25.9
則y關(guān)于x的線性回歸方程為
 
.(
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
,
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在做擲飛鏢游戲時,靶心的高度為1.8米,各靶圈是半徑分別是10厘米、20厘米、30厘米的同心圓,分別對應第10、9、8環(huán).擲鏢人高1.8米,投擲點在高于頭頂20厘米處,人離靶7米,且飛鏢在離人3米處達到最大高度2.4米.假定飛鏢總不偏離與靶心所在的平面,問該飛鏢能否中靶?若中靶,是第幾環(huán)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x2-2ax+3在區(qū)間[1,+∞)上遞增,則實數(shù)a的取值范圍是( 。
A、a=1B、a<1
C、a≤1D、a≥1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+y2+Dx+Ey+1=0,圓C關(guān)于直線x+y+1=0對稱,圓心在第二象限,半徑為2.
(Ⅰ)求圓C的標準方程;
(Ⅱ)已知過點(-4,2)的直線l,圓C的圓心到l的距離為2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

偶函數(shù)f(x)在區(qū)間[m,n](其中0<m<n)上是單調(diào)遞減函數(shù),則f(x)在區(qū)間[-n,-m]上是(  )
A、單調(diào)遞減函數(shù),且有最小值-f(m)
B、單調(diào)遞增函數(shù),且有最大值f(m)
C、單調(diào)遞增函數(shù),且有最小值f(m)
D、單調(diào)遞減函數(shù),且有最大值-f(m)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在圓x2+y2=8內(nèi)有一點P(-1,2),AB為過點P的弦.
(1)過點P的弦的最大弦長為
 

(2)過點P的弦的最小弦長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x2+y2=4則x-y的最大值是( 。
A、2
B、2
2
C、4
D、4
2

查看答案和解析>>

同步練習冊答案