某舞蹈小組有2名男生和3名女生.現(xiàn)從中任選2人參加表演,記為選取女生的人數(shù),求X的分布列及數(shù)學(xué)期望.

解析試題分析:先確定隨機變量的取值,再利用古典概型計算取值的概率,最后利用數(shù)學(xué)期望公式計算.
試題解析:依題意,所有取值為0,1,2.
,,
的分布列為:


0
1
2




 

考點:古典概型、離散型隨機變量的概率分布、數(shù)學(xué)期望.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

同時拋擲兩枚大小形狀都相同、質(zhì)地均勻的骰子,求:
(1)一共有多少種不同的結(jié)果;
(2)點數(shù)之和4的概率;
(3)至少有一個點數(shù)為5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某飲料公司對一名員工進(jìn)行測試以便確定其考評級別.公司準(zhǔn)備了兩種不同的飲料共5 杯,其顏色完全相同,并且其中3杯為飲料,另外2杯為飲料,公司要求此員工一一品嘗后,從5杯飲料中選出3杯飲料.若該員工3杯都選對,則評為優(yōu)秀;若3杯選對2杯,則評為良好;否則評為及格.假設(shè)此人對兩種飲料沒有鑒別能力.
(Ⅰ)求此人被評為優(yōu)秀的概率;
(Ⅱ)求此人被評為良好及以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙、丙三人獨立破譯同一份密碼,已知甲、乙、丙各自破譯出密碼的概率分別為
且他們是否破譯出密碼互不影響,若三人中只有甲破譯出密碼的概率為.
(1)求的值,
(2)設(shè)在甲、乙、丙三人中破譯出密碼的總?cè)藬?shù)為X,求X的分布列和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了了解某班的男女生學(xué)習(xí)體育的情況,按照分層抽樣分別抽取了10名男生和5名女生作為樣本,他們期末體育成績的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù)。

(Ⅰ)若該班男女生平均分?jǐn)?shù)相等,求x的值;
(Ⅱ)若規(guī)定85分以上為優(yōu)秀,在該10名男生中隨機抽取2名,優(yōu)秀的人數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了對某課題進(jìn)行研究,用分層抽樣方法從三所高校A,B,C的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人)

高校
相關(guān)人數(shù)
抽取人數(shù)
A
18

B
36
2
C
54

 
(1)求,;
(2)若從高校B、C抽取的人中選2人作專題發(fā)言,
求這2人都來自高校C的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

小王經(jīng)營一家面包店,每天從生產(chǎn)商處訂購一種品牌現(xiàn)烤面包出售.已知每賣出一個現(xiàn)烤面包可獲利10元,若當(dāng)天賣不完,則未賣出的現(xiàn)烤面包因過期每個虧損5元.經(jīng)統(tǒng)計,得到在某月(30天)中,小王每天售出的現(xiàn)烤面包個數(shù)及天數(shù)如下表:

售出個數(shù)
10
11
12
13
14
15
天數(shù)
3
3
3
6
9
6
試依據(jù)以頻率估計概率的統(tǒng)計思想,解答下列問題:
(Ⅰ)計算小王某天售出該現(xiàn)烤面包超過13個的概率;
(Ⅱ)若在今后的連續(xù)5天中,售出該現(xiàn)烤面包超過13個的天數(shù)大于3天,則小王決定增加訂購量. 試求小王增加訂購量的概率.
(Ⅲ)若小王每天訂購14個該現(xiàn)烤面包,求其一天出售該現(xiàn)烤面包所獲利潤的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了整頓道路交通秩序,某地考慮將對行人闖紅燈進(jìn)行處罰.為了更好地了解市民的態(tài)度,在普通行人中隨機選取了200人進(jìn)行調(diào)查,得到如下數(shù)據(jù):

(Ⅰ)若用表中數(shù)據(jù)所得頻率代替概率,則處罰10元時與處罰20元時,行人會闖紅燈的概率的差是多少?
(Ⅱ)若從這5種處罰金額中隨機抽取2種不同的金額進(jìn)行處罰,在兩個路口進(jìn)行試驗.
求這兩種金額之和不低于20元的概率;
②若用X表示這兩種金額之和,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

A、B兩個試驗方案在某科學(xué)試驗中成功的概率相同,已知A、B兩個方案至少一個方案試驗成功的概率是0.36.
(1)求兩個方案均獲成功的概率;
(2)設(shè)試驗成功的方案的個數(shù)為隨機變量ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案