【題目】某市化工廠三個車間共有工人1 000名,各車間男、女工人數(shù)如下表:
第一車間 | 第二車間 | 第三車間 | |
女工 | 173 | 100 | y |
男工 | 177 | x | z |
已知在全廠工人中隨機抽取1名,抽到第二車間男工的可能性是0. 15.
(1)求x的值;
(2)現(xiàn)用分層抽樣的方法在全廠抽取50名工人,問應(yīng)在第三車間抽取多少名?
【答案】(1)x=150(2)20
【解析】試題分析:(1)在抽樣過程中每個個體被抽到的概率是一樣的,抽到第二車間男工的概率是0.15,用x除以1000就得到0.15,算出x的值.(2)先得出第三車間的總?cè)藬?shù),根據(jù)每個個體被抽到的概率,得出m值.
解:(1)由=0.15,得x=150.
(2)因為第一車間的工人數(shù)是173+177=350,第二車間的工人數(shù)是100+150=250,
所以第三車間的工人數(shù)是1 000-350-250=400.
設(shè)應(yīng)從第三車間抽取m名工人,則由 ,
得m=20.
所以應(yīng)在第三車間抽取20名工人.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在圓上任取一點,過點作軸的垂線段, 為垂足,點在線段上,且,點在圓上運動。
(1)求點的軌跡方程;
(2)過定點的直線與點的軌跡交于兩點,在軸上是否存在點,使為常數(shù),若存在,求出點的坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線在點 處的切線平行直線,且點在第三象限.
(1)求的坐標(biāo);
(2)若直線, 且也過切點 ,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高三(1)班班主任李老師為了了解本班學(xué)生喜愛中國古典文學(xué)是否與性別有關(guān),對全班50人進行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡中國古典文學(xué) | 不喜歡中國古典文學(xué) | 合計 | |
女生 | 5 | ||
男生 | 10 | ||
合計 | 50 |
已知從全班50人中隨機抽取1人,抽到喜歡中國古典文學(xué)的學(xué)生的概率為.
(1)請將上面的列聯(lián)表補充完整;
(2)是否有的把握認(rèn)為喜歡中國古典文學(xué)與性別有關(guān)?請說明理由;
(3)已知在喜歡中國古典文學(xué)的10位男生中,,,還喜歡數(shù)學(xué),,還喜歡繪畫,,還喜歡體育.現(xiàn)從喜歡數(shù)學(xué)、繪畫和體育的男生中各選出1名進行其他方面的調(diào)查,求和不全被選中的概率.
參考公式及數(shù)據(jù):,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了制定合理的節(jié)電方案,供電局對居民用電情況進行了調(diào)查,通過抽樣,獲得了某年200戶居民每戶的月均用電量(單位:度),將數(shù)據(jù)按照,分成9組,制成了如圖所示的頻率直方圖.
(1)求直方圖中的值并估計居民月均用電量的中位數(shù);
(2)從樣本里月均用電量不低于700度的用戶中隨機抽取4戶,用表示月均用電量不低于800度的用戶數(shù),求隨機變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中,E是AA1的中點,畫出過D1、C、E的平面與平面ABB1A1的交線,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為平行四邊形, , , 底面.
(1)證明:平面平面;
(2)若二面角的大小為,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,a1=2,an+1=(n∈N+),
(1)計算a2、a3、a4并由此猜想通項公式an;
(2)證明(1)中的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校隨機調(diào)查了80位學(xué)生,以研究學(xué)生中愛好羽毛球運動與性別的關(guān)系,得到下面的列聯(lián)表:
愛好 | 不愛好 | 合計 | |
男 | 20 | 30 | 50 |
女 | 10 | 20 | 30 |
合計 | 30 | 50 | 80 |
(Ⅰ)將此樣本的頻率估計為總體的概率,隨機調(diào)查了本校的3名學(xué)生,設(shè)這3人中愛好羽毛球運動的人數(shù)為,求 的分布列,數(shù)學(xué)期望及方差;
(Ⅱ)根據(jù)表中數(shù)據(jù),能否有充分證據(jù)判斷愛好羽毛球運動與性別有關(guān)?若有,有多大把握?
0.500 | 0.100 | 0.050 | 0.010 | |
| 0.455 | 2.706 | 3.841 | 6.635 |
附:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com