分析 (I)證明:AB1⊥面BCD,即可證明BC⊥AB1;
(II)若OC=OA,以O(shè)為原點(diǎn),以O(shè)D,OB1,OC所在的直線為x,y,z軸,建立空間直角坐標(biāo)系,利用向量方法求直線CD與平面ABC所成角.
解答 (I)證明:由題意,因?yàn)锳BB1A1是矩形,
AB=2,AA1=4,AD=1,
所以在直角三角形ABB1中,tan∠AB1B=$\frac{1}{2}$,
在直角三角形ABD中,tan∠ABD═$\frac{1}{2}$,
所以∠AB1B=∠ABD,
又∠BAB1+∠AB1B=90°,∠BAB1+∠ABD=90°,
所以在直角三角形ABO中,故∠BOA=90°,
即BD⊥AB1,…(3分)
又因?yàn)镃O⊥側(cè)面ABB1A1,AB1?側(cè)面ABB1A1,
所以CO⊥AB1
所以,AB1⊥面BCD,
因?yàn)锽C?面BCD,
所以BC⊥AB1.…(6分)
(Ⅱ)解:以O(shè)為原點(diǎn),以O(shè)D,OB1,OC所在的直線為x,y,z軸,建立空間直角坐標(biāo)系,
則A(0,$-\frac{{2\sqrt{5}}}{5}$,0),B($-\frac{{4\sqrt{5}}}{5}$,0,0),C(0,0,$\frac{{2\sqrt{5}}}{5}$),D($\frac{{\sqrt{5}}}{5}$,0,0),
所以$\overrightarrow{AB}$($-\frac{{4\sqrt{5}}}{5}$,$\frac{{2\sqrt{5}}}{5}$,0),$\overrightarrow{BC}$=($\frac{{4\sqrt{5}}}{5}$,0,$\frac{{2\sqrt{5}}}{5}$),
設(shè)平面ABC的法向量為$\overrightarrow{n}$=(x,y,z),
則根據(jù)$\left\{\begin{array}{l}-\frac{{4\sqrt{5}}}{5}x+\frac{{2\sqrt{5}}}{5}y=0\\ \frac{{4\sqrt{5}}}{5}x+\frac{{2\sqrt{5}}}{5}z=0\end{array}\right.$,令x=1,則y=2,z=-2,則$\overrightarrow n=(1,2,-2)$,…(9分)
又$\overrightarrow{CD}=(\frac{{\sqrt{5}}}{5},0,-\frac{{2\sqrt{5}}}{5})$
設(shè)直線CD與平面ABC所成角為α,則$sinα=|cos<\overrightarrow n,\overrightarrow{CD}>|=\frac{{\sqrt{5}}}{3}$
所以直線CD與平面ABC所成角為$arcsin\frac{{\sqrt{5}}}{3}$…(12分)
點(diǎn)評(píng) 本題考查線面垂直的判定與性質(zhì),考查線面角,考查向量方法的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\frac{{\sqrt{5}}}{15}$ | C. | $\frac{{\sqrt{15}}}{5}$ | D. | $\frac{{\sqrt{15}}}{15}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m1=-1,m2=1 | B. | m=1 | C. | m=-1 | D. | 無解 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π | B. | $\frac{7π}{2}$ | C. | $\frac{5π}{2}$ | D. | 3π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com