Loading [MathJax]/jax/output/CommonHTML/jax.js
14.關(guān)于x的方程m+1xm2+1+4x+2=0是一元二次方程,則m的值為( �。�
A.m1=-1,m2=1B.m=1C.m=-1D.無解

分析 若關(guān)于x的方程m+1xm2+1+4x+2=0是一元二次方程,則{m2+1=2m+10,解得答案.

解答 解:∵關(guān)于x的方程m+1xm2+1+4x+2=0是一元二次方程,
{m2+1=2m+10
解得:m=1,
故選:B

點(diǎn)評 本題考查的知識點(diǎn)是二次方程的定義,熟練掌握二次方程的定義是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在四棱錐P-ABCD中,底面ABCD為矩形,平面PAB⊥平面ABCD,AB=AP=3,AD=PB=2,E為線段AB上一點(diǎn),且AE:EB=7:2,點(diǎn)F,G,M分別為線段PA、PD、BC的中點(diǎn).
(1)求證:PE⊥平面ABCD;
(2)若平面EFG與直線CD交于點(diǎn)N,求二面角P-MN-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如果f(x)=ax2+bx+c,f(x)>0的解集為{x|x<-2或x>4},那么( �。�
A.f(5)<f(2)<f(-1)B.f(2)<f(5)<f(-1)C.f(-1)<f(2)<f(5)D.f(2)<f(-1)<f(5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.過拋物線x2=4y的焦點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),2|AF|=|BF|+|BA|,則|AB|=( �。�
A.3B.72C.4D.92

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在三棱柱ABC-A1B1C1中,側(cè)面A1ABB1為矩形,AB=2,AA1=4,D在棱AA1上,且4AD=AA1,BD與AB1交于點(diǎn)O,且CO⊥平面A1ABB1
(I)證明:BC⊥AB1;
(II)若OC=OA,求直線CD與平面ABC所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知R上的可導(dǎo)函數(shù)f(x)的圖象如圖所示,則不等式(x2-2x-3)f′(x)>0的解集為(  )
A.(-∞,-2)∪(1,+∞)B.(-∞,-2)∪(1,2)C.(-∞,-1)∪(-1,1)∪(3,+∞)D.(-∞,-1)∪(-1,0)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:x2a2+y22=1(a>b>0),且圓C′:x2+y2=1過橢圓C的上頂點(diǎn)和右焦點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程和離心率;
(2)已知直線l與橢圓C只有1個(gè)交點(diǎn),探究:是否存在兩個(gè)定點(diǎn)P(x1,0)、Q(x2,0),且x1<x2,使得P、Q到直線l的距離之積為1.如果存在,求出這兩個(gè)定點(diǎn)的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.不等式(a-2)x2+4(a-2)x-4<0的解集為R,則實(shí)數(shù)a的取值范圍是(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ln(x+2a)-ax,a>0.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)記f(x)的最大值為M(a),若a2>a1>0且M(a1)=M(a2),求證:a1a214;
(Ⅲ)若a>2,記集合{x|f(x)=0}中的最小元素為x0,設(shè)函數(shù)g(x)=|f(x)|+x,求證:x0是g(x)的極小值點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案