18.已知數(shù)列{an}的前n項(xiàng)和為Sn=ln(1+$\frac{1}{n}$),則e${\;}^{{a}_{7}+{a}_{8}+{a}_{9}}$=( 。
A.$\frac{3}{4}$B.$\frac{20}{21}$C.$\frac{26}{27}$D.$\frac{35}{36}$

分析 由于a7+a8+a9=S9-S6,再利用對(duì)數(shù)與指數(shù)函數(shù)的運(yùn)算性質(zhì)即可得出.

解答 解:∵a7+a8+a9=S9-S6=$ln(1+\frac{1}{9})$-$ln(1+\frac{1}{6})$=$ln(\frac{10}{9}×\frac{6}{7})$=ln$\frac{20}{21}$,
∴e${\;}^{{a}_{7}+{a}_{8}+{a}_{9}}$=${e}^{ln\frac{20}{21}}$=$\frac{20}{21}$.
故選:B

點(diǎn)評(píng) 本題考查了對(duì)數(shù)與指數(shù)函數(shù)的運(yùn)算性質(zhì)、數(shù)列遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知i是虛數(shù)單位,若z(1+3i)=i,則z的共軛復(fù)數(shù)的虛部為(  )
A.$\frac{1}{10}$B.-$\frac{1}{10}$C.$\frac{i}{10}$D.-$\frac{i}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知f(x)=2$\sqrt{3}$sinxcosx+2cos2x-2(x∈R).
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的最大值,并指出此時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{lnx}{x}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知a、b∈R,a>b>e,(其中e是自然對(duì)數(shù)的底數(shù)),求證:ba>ab

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),實(shí)軸長(zhǎng)為2$\sqrt{3}$.
(1)求雙曲線C的方程;
(2)若直線l:y=kx+$\sqrt{2}$與雙曲線C的左支交于A、B兩點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知定義在R上的奇函數(shù)f(x),若f(x)的導(dǎo)函數(shù)f'(x)滿足f'(x)<x2+1,則不等式f(x)<$\frac{1}{3}$x3+x的解集為(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{a^x},x≤1\\{x^2}-6x+8,x>1\end{array}\right.$(a>0,a≠1),若函數(shù)y=|f(x)|-a有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在如圖所示的算法流程圖中,輸出S的值為( 。
A.11B.12C.13D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知集合M={-1,0,1,2},N={x|log2x<1},則M∩N=( 。
A.{1}B.{-1,0}C.{0,1}D.{-1,0,1}

查看答案和解析>>

同步練習(xí)冊(cè)答案