已知曲線C:與直線L:僅有一個(gè)公共點(diǎn),求m的范圍.

【錯(cuò)解分析】曲線C:可化為①,聯(lián)立,得:,由Δ=0,得.在將方程變形時(shí)應(yīng)時(shí)時(shí)注意范圍的變化,這樣才不會(huì)出錯(cuò)。
【正解】原方程的對(duì)應(yīng)曲線應(yīng)為橢圓的上半部分.(如圖),結(jié)合圖形易求得m的范圍為

.
注意:在將方程變形時(shí)應(yīng)時(shí)時(shí)注意范圍的變化,這樣才不會(huì)出錯(cuò).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓C:=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(﹣c,0),F(xiàn)2(c,0),M是橢圓短軸的一個(gè)端點(diǎn),且滿足=0,點(diǎn)N( 0,3 )到橢圓上的點(diǎn)的最遠(yuǎn)距離為5
(1)求橢圓C的方程
(2)設(shè)斜率為k(k≠0)的直線l與橢圓C相交于不同的兩點(diǎn)A、B,Q為AB的中點(diǎn),;問A、B兩點(diǎn)能否關(guān)于過點(diǎn)P、Q的直線對(duì)稱?若能,求出k的取值范圍;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的方程為,過左焦點(diǎn)F1作斜率為的直線交雙曲線的右支于點(diǎn)P,且軸平分線段F1P,則雙曲線的離心率是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)的圖像與直線恰有三個(gè)公共點(diǎn),則實(shí)數(shù)m的取值范圍是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知方程 表示焦點(diǎn)在y軸上的雙曲線,則k的取值范圍是(   )
A.3<k<9B.k>3C.k>9D.k<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線上有一點(diǎn)P到左準(zhǔn)線的距離為,則P到右焦點(diǎn)的距離為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
在平面直角坐標(biāo)系xOy中,拋物線C的頂點(diǎn)在原點(diǎn),經(jīng)過點(diǎn)A(2,2),其焦點(diǎn)F在x軸上.
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l是拋物線的準(zhǔn)線,求證:以AB為直徑的圓與準(zhǔn)線l相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的右焦點(diǎn)是F, 過點(diǎn)F且傾角為600的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則此雙曲線的離心率的范圍是(  )
A.B.(1,2)C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.

(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)直線與拋物線C交于兩點(diǎn),,且(a為正常數(shù)).過弦AB的中點(diǎn)M作平行于x軸的直線交拋物線C于點(diǎn)D,連結(jié)AD、BD得到
(i)求實(shí)數(shù)a,b,k滿足的等量關(guān)系;
(ii)的面積是否為定值?若為定值,求出此定值;若不是定值,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案