A. | B. | C. | D. |
分析 根據(jù)函數(shù)的奇偶性和函數(shù)的最值即可判斷.
解答 解:當(dāng)y>0時,y=(x2+$\frac{1}{{x}^{2}}$)${\;}^{\frac{1}{2}}$,該為函數(shù)為偶函數(shù),
故關(guān)于y軸對稱,且y2=x2+$\frac{1}{{x}^{2}}$≥2$\sqrt{{x}^{2}•\frac{1}{{x}^{2}}}$=2,當(dāng)且僅當(dāng)x=±1時,取等號,故最小值為2,
y2=x2+$\frac{1}{{x}^{2}}$也關(guān)于x軸對稱,
故選:D
點評 本題考查了函數(shù)圖象的識別,關(guān)鍵是掌握函數(shù)的奇偶性和函數(shù)的最值,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y2=-2x | B. | y2=-4x | C. | y2=2x | D. | y2=-4x或y2=4x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 4 | C. | 8 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,+∞) | B. | (1,+∞) | C. | ($\frac{\sqrt{3}-1}{2}$,+∞) | D. | ($\frac{\sqrt{2}-1}{2}$,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com