3.由直線y=1,y=2,曲線xy=1及y軸所圍成的封閉圖形的面積是ln2.

分析 由題意,利用定積分的幾何意義表示所圍曲邊梯形的面積,然后計算定積分.

解答 解:${∫}_{1}^{2}\frac{1}{y}dy$=lny|${\;}_{1}^{2}$=ln2-ln1=ln2;
故答案為:ln2.

點(diǎn)評 本題考查了利用定積分求曲邊梯形的面積;關(guān)鍵是正確利用定積分的幾何意義表示所求面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知棱錐S-ABCD中,底面ABCD為正方形,SA⊥底面ABCD,SA=AB,則異面直線AC與SD所成角為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=x2-mlnx在[2,+∞)上單調(diào)遞增,則實(shí)數(shù)m的取值范圍為(-∞,8].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求下列函數(shù)的定義域
(1)y=$\sqrt{x+3}$+$\frac{1}{x+2}$
(2)y=$\sqrt{lo{g}_{3}x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知關(guān)于x的一元二次不等式mx2-(1-m)x+m≥0的解集為R,則實(shí)數(shù)m的取值范圍是[$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)g(x)=x2-ax+b,其圖象對稱軸為直線x=2,且g(x)的最小值為-1,設(shè)f(x)=$\frac{g(x)}{x}$.
(1)求實(shí)數(shù)a,b的值;
(2)若不等式f(3x)-t•3x≥0在x∈[-2,2]上恒成立,求實(shí)數(shù)t的取值范圍;
(3)若關(guān)于x的方程f(|2x-2|)+k•$\frac{2}{|{2}^{x}-2|}$-3k=0有三個不同的實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在△ABC中,AB=2,3acosB-bcosC=ccosB,點(diǎn)D在線段BC上.
(Ⅰ)若∠ADC=$\frac{3π}{4}$,求AD的長;
(Ⅱ)若BD=2DC,△ACD的面積為$\frac{4}{3}\sqrt{2}$,求$\frac{sin∠BAD}{sin∠CAD}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖的偽代碼輸出的結(jié)果S為17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=(x+a)ex+b(x-2)2,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為:y=-5.
(Ⅰ)求a,b的值;
(Ⅱ)求f(x)的極值.

查看答案和解析>>

同步練習(xí)冊答案