已知曲線(xiàn),過(guò)上一點(diǎn)作一斜率為的直線(xiàn)交曲線(xiàn)于另一點(diǎn)(且,點(diǎn)列的橫坐標(biāo)構(gòu)成數(shù)列,其中.
(1)求與的關(guān)系式;
(2)令,求證:數(shù)列是等比數(shù)列;
(3)若(為非零整數(shù),),試確定的值,使得對(duì)任意,都有成立.
(1);(2)詳見(jiàn)解析;(3).
解析試題分析:(1)先根據(jù)直線(xiàn)的斜率為,利用斜率公式與構(gòu)建等式,通過(guò)化簡(jiǎn)得到與的關(guān)系式;(2)在(1)的基礎(chǔ)上,將代入,通過(guò)化簡(jiǎn)運(yùn)算得出與之間的等量關(guān)系,然后根據(jù)等比數(shù)列的定義證明數(shù)列是等比數(shù)列;(3)先求出數(shù)列的通項(xiàng)公式,進(jìn)而求出數(shù)列的通項(xiàng)公式,將進(jìn)行作差得到,對(duì)為正奇數(shù)和正偶數(shù)進(jìn)行分類(lèi)討論,結(jié)合參數(shù)分離法求出在相應(yīng)條件的取值范圍,最終再將各范圍取交集,從而確定非零整數(shù)的值.
試題解析:(1)由題意知,所以;
(2)由(1)知,
,
,故數(shù)列是以為公比的等比數(shù)列;
(3),,
,,
當(dāng)為正奇數(shù)時(shí),則有,
由于數(shù)列對(duì)任意正奇數(shù)單調(diào)遞增,故當(dāng)時(shí),取最小值,所以;
當(dāng)為正偶數(shù)時(shí),則有,
而數(shù)列對(duì)任意正偶數(shù)單調(diào)遞減,故當(dāng)時(shí),取最大值,所以,
綜上所述,,由于為非零整數(shù),因此
考點(diǎn):1.直線(xiàn)的斜率;2.數(shù)列的遞推式;3.等比數(shù)列的定義;4.數(shù)列的單調(diào)性;5.不等式恒成立
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列中,,且有.
(1)寫(xiě)出所有可能的值;
(2)是否存在一個(gè)數(shù)列滿(mǎn)足:對(duì)于任意正整數(shù),都有成立?若有,請(qǐng)寫(xiě)出這個(gè)數(shù)列的前6項(xiàng),若沒(méi)有,說(shuō)明理由;
(3)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若正數(shù)項(xiàng)數(shù)列的前項(xiàng)和為,首項(xiàng),點(diǎn),在曲線(xiàn)上.
(1)求,;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè),表示數(shù)列的前項(xiàng)和,若恒成立,求及實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某產(chǎn)品具有一定的時(shí)效性,在這個(gè)時(shí)效期內(nèi),由市場(chǎng)調(diào)查可知,在不做廣告宣傳且每件獲利元的前提下,可賣(mài)出件;若做廣告宣傳,廣告費(fèi)為千元比廣告費(fèi)為千元時(shí)多賣(mài)出件.
(Ⅰ)試寫(xiě)出銷(xiāo)售量與的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)時(shí),廠家應(yīng)生產(chǎn)多少件這種產(chǎn)品,做幾千元的廣告,才能獲利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列,滿(mǎn)足.
(1)若是等差數(shù)列,求證:為等差數(shù)列;
(2)若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}滿(mǎn)足,,.
(1)求證:數(shù)列為等比數(shù)列;
(2)是否存在互不相等的正整數(shù)、、,使、、成等差數(shù)列,且、、 成等比數(shù)列?如果存在,求出所有符合條件的、、;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知各項(xiàng)均為正數(shù)的數(shù)列{}滿(mǎn)足--2=0,n∈N﹡,且是a2,a4的等差中項(xiàng).
(1)求數(shù)列{}的通項(xiàng)公式;
(2)若=,=b1+b2+…+,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù),數(shù)列滿(mǎn)足.
⑴求數(shù)列的通項(xiàng)公式;
⑵設(shè),若對(duì)恒成立,求實(shí)數(shù)的取值范圍;
⑶是否存在以為首項(xiàng),公比為的數(shù)列,,使得數(shù)列中每一項(xiàng)都是數(shù)列中不同的項(xiàng),若存在,求出所有滿(mǎn)足條件的數(shù)列的通項(xiàng)公式;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)等差數(shù)列的前項(xiàng)和,且,.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿(mǎn)足,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com