已知四個(gè)函數(shù):
①f1(x)=ax+b;
②f2(x)=x2+ax+b;
③f3(x)=ax(a>0且a≠1);
④f4(x)=logax(a>0且a≠1).
其中滿足性質(zhì)f(
x1x2
1+λ
)≤
f(x1)+λf(x2)
1+λ
(0≤λ≤1)的函數(shù)有
 
.(寫出序號(hào)即可)
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)已知條件知,滿足性質(zhì)的函數(shù)為下凸函數(shù),所以根據(jù)這四個(gè)函數(shù)圖象即可判斷其是否為下凸函數(shù).
解答: 解:滿足f(
x1x2
1+λ
)≤
f(x1)+λf(x2)
1+λ
(0≤λ≤1)的函數(shù)必為下凸函數(shù);
∴根據(jù)一次函數(shù),開口向上的二次函數(shù),指數(shù)函數(shù)的圖象知①②③三個(gè)函數(shù)滿足性質(zhì);
對(duì)于對(duì)數(shù)函數(shù),當(dāng)0<a<1時(shí),為下凸函數(shù),a>1時(shí),為上凸函數(shù),即④不滿足性質(zhì);
故答案為:①②③.
點(diǎn)評(píng):考查下凸函數(shù)的定義,以及一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)及對(duì)數(shù)函數(shù)的圖象,以及根據(jù)圖象判斷函數(shù)是否為下凸函數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若不等式|x-1|<a成立的充分非必要條件是0<x<4,則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,3)
B、[1,+∞)
C、[3,+∞)
D、(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合P={x|
1
2
≤x≤3}
,函數(shù)f(x)=log2(ax2-2x+2)的定義域?yàn)镼.
(1)若實(shí)數(shù)a=-
3
2
,則P∩Q=
 

(2)若實(shí)數(shù)a<-6,則P∩Q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面EAD⊥平面ABCD,△ADE是等邊三角形,ABCD是矩形,AD=2,AB=2
2
,F(xiàn)、G分別是AB、AD的中點(diǎn).
(1)求證:CF⊥平面EFG;
(2)若P為線段CE上一點(diǎn),且
CP
=
1
3
CE
,求DP與平面EFG所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋擲2顆均勻的骰子,至少有一個(gè)4點(diǎn)或5點(diǎn)出現(xiàn)時(shí),就說這次試驗(yàn)成功,則在10次試驗(yàn)中,成功的次數(shù)的期望是(  )
A、
80
9
B、
55
9
C、
50
9
D、
10
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f′(x0)=0是可導(dǎo)函數(shù)y=f(x)在點(diǎn)x=x0處有極值的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在[0,1]的函數(shù)f(x)同時(shí)滿足以下三條:①對(duì)任意的x∈[0,1],總有f(x)≥0;②f(1)=1;③當(dāng)x1≥0,x2≥0,x1+x2≤1時(shí),總有f(x1+x2)≥f(x1)+f(x2)成立.
(1)函數(shù)g(x)=2x-1在區(qū)間[0,1]上是否同時(shí)適合①②③?并說明理由;
(2)設(shè)m,n∈[0,1],且m>n,試比較f(m)與f(n)的大。
(3)假設(shè)存在a∈[0,1],使得f(a)∈[0,1]且f[f(a)]=a,求證:f(a)=a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定點(diǎn)F1(0,-2),F(xiàn)2(0,2),動(dòng)點(diǎn)P滿足|PF1|+|PF2|=m+
4
m
(m>0)則點(diǎn)P的軌跡為( 。
A、橢圓B、線段
C、圓D、橢圓或線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若指數(shù)函數(shù)f(x)=(a-2)x為減函數(shù),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案