【題目】選修4-4:坐標系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù),),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)若極坐標為的點在曲線C1上,求曲線C1與曲線C2的交點坐標;
(2)若點的坐標為,且曲線C1與曲線C2交于兩點,求|PB||PD|
【答案】(1)(2)6
【解析】分析:(1)點對應的直角坐標為(1,1),由曲線C1的參數(shù)方程知:曲線C1是過點(﹣1,3)的直線,利用點斜式可得曲線C1的方程.曲線C2的極坐標方程即,展開后,利用互化公式即可得出曲線C2的直角坐標方程聯(lián)立即可得出交點坐標.
(2)由直線參數(shù)方程可判斷知:P在直線C1上,將參數(shù)方程代入圓的方程得:t2﹣4(cosα﹣sinα)t+6=0,設(shè)點B,D對應的參數(shù)分別為t1,t2,利用|PB||PD|=|t1||t2|=|t1t2|即可得出.
詳解:(1)點對應的直角坐標為,
由曲線的參數(shù)方程知:曲線是過點的直線,故曲線的方程為,
而曲線:展開得:
得直角坐標方程為,
聯(lián)立得,解得:,
故交點坐標分別為
(2)由判斷知:在直線上,將代入方程得:
,設(shè)點對應的參數(shù)分別為,
則,而,
所以
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)是定義在上的函數(shù),①若存在,使得成立,則函數(shù)在上單調(diào)遞增。②若存在,使得成立,則函數(shù)在上不可能單調(diào)遞減. ③若存在對于任意都有成立,則函數(shù)在上遞增。④對于任意的,都有成立,則函數(shù)在上單調(diào)遞減。
則以上真命題的個數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,.
(1)若函數(shù)在定義域上為單調(diào)遞增函數(shù),求實數(shù)的取值范圍;
(2)設(shè)函數(shù),,,若存在使成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了保護學生的視力,課桌和椅子的高度都是按一定的關(guān)系配套設(shè)計的,研究表明:假設(shè)課桌的高度為,椅子的高度為,則y應是x的一次函數(shù),下表列出兩套符合條件的課桌和椅子的高度:
第一套 | 第二套 | |
椅子高度 | 40.0 | 37.0 |
課桌高度 | 75.0 | 70.2 |
(1)請你確定y與x的函數(shù)關(guān)系式(不必寫出x的取值范圍);
(2)現(xiàn)有一把高42.0 cm的椅子和一張高78.2cm的課桌,它們是否配套?為什么?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直四棱柱ABCD–A1B1C1D1中,已知底面ABCD是菱形,點P是側(cè)棱C1C的中點.
(1)求證:AC1∥平面PBD;
(2)求證:BD⊥A1P.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在《周易》中,長橫“ ”表示陽爻,兩個短橫“ ”表示陰爻,有放回地取陽爻和陰爻三次合成一卦,共有種組合方法,這便是《系辭傳》所說:“太極生兩儀,兩儀生四象,四象生八卦”,有放回地取陽爻和陰爻一次有2種不同的情況,有放回地取陽爻和陰爻兩次有四種不同的情況,有放回地取陽爻和陰爻三次有八種不同的情況,即為八卦,在一次卜卦中,恰好出現(xiàn)兩個陽爻一個陰爻的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( )
A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中后占一半以上
B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的
C. 互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)后比前多
D. 互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)后比后多
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com