【題目】對(duì)于函數(shù),若存在定義域內(nèi)某個(gè)區(qū)間,使得在上的值域也是,則稱函數(shù)在定義域上封閉.如果函數(shù)在上封閉,那么實(shí)數(shù)的取值范圍是______.
【答案】
【解析】
先用定義證明函數(shù)在上遞增,再根據(jù)奇偶性可得函數(shù)在上為增函數(shù),然后討論和可得的單調(diào)性,當(dāng)時(shí),依題意可得是的兩個(gè)不同的實(shí)數(shù)解,由此可解得.當(dāng)時(shí),依題意可得,由此可推出.
.設(shè),則,
因?yàn)?/span>,所以,
所以函數(shù)在上遞增,
又函數(shù)為奇函數(shù),所以函數(shù)在上為增函數(shù),
當(dāng)時(shí),函數(shù)為增函數(shù), 因?yàn)?/span>在上的值域也是,所以,即,
即是的兩個(gè)不同的實(shí)數(shù)解,解得或,
由得,
當(dāng)時(shí),為遞減函數(shù), 因?yàn)?/span>在上的值域也是,所以,即 ,
因?yàn)?/span>,所以,
所以,所以,因?yàn)?/span>,所以,即,
所以,所以,即.
綜上所述:或.
故答案為: .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:=1(a>b>0),點(diǎn)A、B分別是橢圓C的左頂點(diǎn)和上頂點(diǎn),直線AB與圓G:x2+y2=(c是橢圓的半焦距)相離,P是直線AB上一動(dòng)點(diǎn),過點(diǎn)P作圓G的兩切線,切點(diǎn)分別為M、N.
(1)若橢圓C經(jīng)過兩點(diǎn)、,求橢圓C的方程;
(2)當(dāng)c為定值時(shí),求證:直線MN經(jīng)過一定點(diǎn)E,并求·的值(O是坐標(biāo)原點(diǎn));
(3)若存在點(diǎn)P使得△PMN為正三角形,試求橢圓離心率的取值范圍..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓E :的焦距為4,兩條準(zhǔn)線間的距離為8,A,B分別為橢圓E的左、右頂點(diǎn).
(1)求橢圓E 的標(biāo)準(zhǔn)方程;
(2)已知圖中四邊形ABCD 是矩形,且BC=4,點(diǎn)M,N分別在邊BC,CD上,AM與BN相交于第一象限內(nèi)的點(diǎn)P .①若M,N分別是BC,CD的中點(diǎn),證明:點(diǎn)P在橢圓E上;②若點(diǎn)P在橢圓E上,證明:為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB=4,AD=2,E是CD的中點(diǎn),將△ADE沿AE折起,得到如圖2所示的四棱錐D1—ABCE,其中平面D1AE⊥平面ABCE.
(1)證明:BE⊥平面D1AE;
(2)設(shè)F為CD1的中點(diǎn),在線段AB上是否存在一點(diǎn)M,使得MF∥平面D1AE,若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)復(fù)數(shù),其中xnyn∈R,n∈N*,i為虛數(shù)單位,,z1=3+4i,復(fù)數(shù)zn在復(fù)平面上對(duì)應(yīng)的點(diǎn)為Zn.
(1)求復(fù)數(shù)z2,z3,z4的值;
(2)是否存在正整數(shù)n使得?若存在,求出所有滿足條件的;若不存在,請(qǐng)說明理由;
(3)求數(shù)列的前項(xiàng)之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,有一個(gè)長(zhǎng)方體形狀的敞口玻璃容器,底面是邊長(zhǎng)為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖②),且傾斜時(shí)底面的一條棱始終在桌面上(圖①、②均為容器的縱截面).
(1)要使傾斜后容器內(nèi)的溶液不會(huì)溢出,角的最大值是多少?
(2)現(xiàn)需要倒出不少于的溶液,當(dāng)時(shí),能實(shí)現(xiàn)要求嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓兩頂點(diǎn),短軸長(zhǎng)為4,焦距為2,過點(diǎn)的直線與橢圓交于兩點(diǎn).設(shè)直線與直線交于點(diǎn).
(1)求橢圓的方程;
(2)求線段中點(diǎn)的軌跡方程;
(3)求證:點(diǎn)的橫坐標(biāo)為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“總把新桃換舊符”(王安石)、“燈前小草寫桃符”(陸游),春節(jié)是中華民族的傳統(tǒng)節(jié)日,在宋代人們用寫“桃符”的方式來祈福避禍,而現(xiàn)代人們通過貼“福”字、貼春聯(lián)、掛燈籠等方式來表達(dá)對(duì)新年的美好祝愿,某商家在春節(jié)前開展商品促銷活動(dòng),顧客凡購物金額滿50元,則可以從“!弊、春聯(lián)和燈籠這三類禮品中任意免費(fèi)領(lǐng)取一件,若有4名顧客都領(lǐng)取一件禮品,則他們中有且僅有2人領(lǐng)取的禮品種類相同的概率是( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com