【題目】已知橢圓C:=1(a>b>0),點(diǎn)A、B分別是橢圓C的左頂點(diǎn)和上頂點(diǎn),直線(xiàn)AB與圓G:x2+y2(c是橢圓的半焦距)相離,P是直線(xiàn)AB上一動(dòng)點(diǎn)過(guò)點(diǎn)P作圓G的兩切線(xiàn),切點(diǎn)分別為M、N.

(1)若橢圓C經(jīng)過(guò)兩點(diǎn)、求橢圓C的方程;

(2)當(dāng)c為定值時(shí),求證:直線(xiàn)MN經(jīng)過(guò)一定點(diǎn)E,并求·的值(O是坐標(biāo)原點(diǎn));

(3)若存在點(diǎn)P使得△PMN為正三角形,試求橢圓離心率的取值范圍..

【答案】(1)=1.(2)見(jiàn)解析(3)

【解析】(1)解:令橢圓mx2+ny2=1,其中m=,n,所以m=,n即橢圓方程為=1.

(2)證明:直線(xiàn)AB:=1,設(shè)點(diǎn)P(x0,y0),則OP的中點(diǎn)為所以點(diǎn)O、M、P、N所在的圓的方程為,化簡(jiǎn)為x2-x0x+y2-y0y=0與圓x2+y2作差,即直線(xiàn)MN:x0x+y0y.

因?yàn)辄c(diǎn)P(x0y0)在直線(xiàn)AB上,=1,

所以x0 =0,

得x=-,y故定點(diǎn)E ,·.

(3)解:由直線(xiàn)AB與圓G:x2+y2 (c是橢圓的焦半距)相離,4a2b2>c2(a2+b2),4a2(a2-c2)>c2(2a2-c2),得e4-6e2+4>0.因?yàn)?<e<1所以0<e23、.連結(jié)ON、OM、OP,若存在點(diǎn)P使△PMN為正三角形,則在RtOPN,OP=2ON=2r=c所以c,a2b2c2(a2+b2),a2(a2-c2)≤c2(2a2-c2),e43e2+1≤0.因?yàn)?<e<1,所以e2<1②.由①②得e2<3-,所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于數(shù)列,定義,

(1),是否存在,使得?請(qǐng)說(shuō)明理由;

(2) ,求數(shù)列的通項(xiàng)公式;

(3) ,求證:“為等差數(shù)列”的充要條件是“的前4項(xiàng)為等差數(shù)列,為等差數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓方程為

1)設(shè)橢圓的左右焦點(diǎn)分別為,點(diǎn)在橢圓上運(yùn)動(dòng),求的值;

2)設(shè)直線(xiàn)和圓相切,和橢圓交于、兩點(diǎn),為原點(diǎn),線(xiàn)段分別和圓交于、兩點(diǎn),設(shè)的面積分別為、,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列共有項(xiàng),記該數(shù)列前項(xiàng)中的最大項(xiàng)為,該數(shù)列后項(xiàng)中的最小項(xiàng)為,

1)若數(shù)列的通項(xiàng)公式為,求數(shù)列的通項(xiàng)公式;

2)若數(shù)列滿(mǎn)足,,求數(shù)列的通項(xiàng)公式;

3)試構(gòu)造一個(gè)數(shù)列,滿(mǎn)足,其中是公差不為零的等差數(shù)列,是等比數(shù)列,使得對(duì)于任意給定的正整數(shù),數(shù)列都是單調(diào)遞增的,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高三年級(jí)某班50名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示,成績(jī)分組區(qū)間為:.其中a,bc成等差數(shù)列且.物理成績(jī)統(tǒng)計(jì)如表.(說(shuō)明:數(shù)學(xué)滿(mǎn)分150分,物理滿(mǎn)分100分)

分組

頻數(shù)

6

9

20

10

5

1)根據(jù)頻率分布直方圖,請(qǐng)估計(jì)數(shù)學(xué)成績(jī)的平均分;

2)根據(jù)物理成績(jī)統(tǒng)計(jì)表,請(qǐng)估計(jì)物理成績(jī)的中位數(shù);

3)若數(shù)學(xué)成績(jī)不低于140分的為“優(yōu)”,物理成績(jī)不低于90分的為“優(yōu)”,已知本班中至少有一個(gè)“優(yōu)”同學(xué)總數(shù)為6人,從數(shù)學(xué)成績(jī)?yōu)椤皟?yōu)”的同學(xué)中隨機(jī)抽取2人,求兩人恰好均為物理成績(jī)“優(yōu)”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)過(guò)點(diǎn),且P到拋物線(xiàn)焦點(diǎn)的距離為2直線(xiàn)過(guò)點(diǎn),且與拋物線(xiàn)相交于AB兩點(diǎn).

(Ⅰ)求拋物線(xiàn)的方程;

(Ⅱ)若點(diǎn)Q恰為線(xiàn)段AB的中點(diǎn),求直線(xiàn)的方程;

(Ⅲ)過(guò)點(diǎn)作直線(xiàn)MA,MB分別交拋物線(xiàn)于C,D兩點(diǎn),請(qǐng)問(wèn)C,D,Q三點(diǎn)能否共線(xiàn)?若能,求出直線(xiàn)的斜率;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了了解高一年級(jí)學(xué)生學(xué)習(xí)數(shù)學(xué)的狀態(tài),從期中考試成績(jī)中隨機(jī)抽取50名學(xué)生的數(shù)學(xué)成績(jī),按成績(jī)分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

(1)由頻率分布直方圖,估計(jì)這50名學(xué)生數(shù)學(xué)成績(jī)的中位數(shù)和平均數(shù)(保留到0.01);

(2)該校高一年級(jí)共有1000名學(xué)生,若本次考試成績(jī)90分以上(含90分)為優(yōu)秀等次,則根據(jù)頻率分布直方圖估計(jì)該校高一學(xué)生數(shù)學(xué)成績(jī)達(dá)到優(yōu)秀等次的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行六面體ABCDA1B1C1D1中,AA1A1D,ABBC,∠ABC120°.

1)證明:ADBA1;

2)若平面ADD1A1⊥平面ABCD,且A1DAB,求直線(xiàn)BA1與平面A1B1CD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù),若存在定義域內(nèi)某個(gè)區(qū)間,使得上的值域也是,則稱(chēng)函數(shù)在定義域上封閉.如果函數(shù)上封閉,那么實(shí)數(shù)的取值范圍是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案