若函數(shù)y=
x2+2kx+k
中自變量x的取值范圍是一切實數(shù),求k的取值范圍.
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由定義域為R,得被開方數(shù)大于等于0一定成立,再由二次函數(shù)的性質(zhì)解得.
解答: 解:∵函數(shù)y=
x2+2kx+k
中自變量x的取值范圍是一切實數(shù),
∴x2+2kx+k≥0,x∈R恒成立
故△=(2k)2-4×k≤0
得0≤k≤1
故k的取值范圍為:[0,1]
點評:本題主要考查函數(shù)恒成立的問題,解決恒成立問題時,主要有兩種方法,一是判別式法,二是最值法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(
x
-
1
x
)7
展開式中,不含x2的項的系數(shù)和是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=
3
x-12,則其傾斜角為(  )
A、
π
6
B、
π
3
C、
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x+
π
6
)cos(2x+
π
6
)的最小正周期為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4cos2x+sin2x-4cosx-2.
(1)求f(
π
3
)的值;
(2)求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x+cosx(x∈R),則不等式f(ex-1)>f(0)的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列各式的值.
(1)sin72°cos18°+cos72°sin18°;
(2)cos72°cos12°+sin72°sin12°;
(3)
tan12°+tan33°
1-tan12°tan33°
;
(4)cos74°sin14°-sin74°cos14°;
(5)sin34°sin26°-cos34°cos26°;
(6)sin20°cos110°+cos160°sin70°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,MB=MC,AN=2NC,AM與BN相交于點P,求證:AP:PM=4:1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點O在△ABC內(nèi),且滿足向量
OA
+2
OB
+2
OC
=
0
,則△AOB與△AOC的面積之比是
 

查看答案和解析>>

同步練習(xí)冊答案