【題目】如圖,平面平面,其中為矩形,為直角三角形,,.
(1)求證:平面平面;
(2)求直線與平面所成角的正弦值.
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)運用線面垂直的判定定理及面面垂直的判定定理推證;(2)運用線面角的定義運用解直角三角形的方法求解或建立空間直角坐標系,運用空間向量的數(shù)量積求解.
試題解析:
(1)∵平面平面,平面平面
,平面
∴平面,
又平面,
∴
又,
∴平面
而平面,
∴平面平面.
(2)解法一:
∵
∴與平面所成角的大小等于與平面所成角的大小
過作于,連接
∵平面平面,平面平面,平面
∴平面
∴即為與平面所成的角
由,得,
∴
∴直線與平面所成角的正弦值為.
解法二:以為原點,所在直線分別為軸、軸建立空間直角坐標系,
則
于是,,,
設(shè)為平面的法向量
由得
取
設(shè)與的夾角為
所以
所以與平面所成的角的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A,B兩城相距100 km,在兩地之間距A城x km處的D地建一核電站給A,B兩城供電.為保證城市安全,核電站與城市距離不得少于10 km.已知供電費用與供電距離的平方和供電量之積成正比,比例系數(shù)λ=0.25.若A城供電量為20億度/月,B城為10億度/月.
(1)求x的取值范圍;
(2)把月供電總費用y表示成x的函數(shù);
(3)核電站建在距A城多遠,才能使供電費用最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在R上的奇函數(shù),且時,
(1)求函數(shù)的解析式.
(2)畫出函數(shù)的圖象,并寫出函數(shù)單調(diào)區(qū)間及值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國的煙火名目繁多,花色品種繁雜.其中“菊花”煙花是最壯觀的煙花之一,制造時一般是期望在它達到最高點時爆裂,通過研究,發(fā)現(xiàn)該型煙花爆裂時距地面的高度(單位:米)與時間(單位:秒)存在函數(shù)關(guān)系,并得到相關(guān)數(shù)據(jù)如下表:
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中,選取一個函數(shù)描述該型煙花爆裂時距地面的高度與時間的變化關(guān)系:,確定此函數(shù)解析式,并簡單說明理由;
(2)利用你選取的函數(shù),判斷煙花爆裂的最佳時刻,并求出此時煙花距地面的高度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用反證法證明“a,b,c中至少有一個大于0”,下列假設(shè)正確的是()
A. 假設(shè)a,b,c都小于0 B. 假設(shè)a,b,c都大于0
C. 假設(shè)a,b,c中都不大于0 D. 假設(shè)a,b,c中至多有一個大于0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(-3,-1)和(4,-6)在直線3x-2y-a=0的兩側(cè),則實數(shù)a的取值范圍為( )
A. (-7,24)
B. (-∞,-7)∪(24,+∞)
C. (-24,7)
D. (-∞,-24)∪(7,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐P﹣ABCD中,四邊形ABCD為正方形,PD⊥平面ABCD,PD=DA=2,F(xiàn),E分別為AD、PC的中點.
(1)證明:DE∥平面PFB;
(2)求三棱錐A﹣PFB的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用反證法證明命題“等腰三角形的底角必是銳角”,下列假設(shè)正確的是( )
A. 等腰三角形的頂角不是銳角 B. 等腰三角形的底角為直角
C. 等腰三角形的底角為鈍角 D. 等腰三角形的底角為直角或鈍角
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com