【題目】已知f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若任意x∈R使不等式 成立,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:由f(x)≤x+2,

,

解之得0≤x≤2,

∴f(x)≤x+2的解集為{x|0≤x≤2}


(2)解:由題可得,f(x)min (a2+ +9),

而f(x)= ,

∵f(x)min=2,

,


【解析】(1)通過(guò)討論x的范圍,得到各個(gè)區(qū)間上的x的范圍,取并集即可;(2)求出f(x)的最小值,得到關(guān)于a的不等式,解出即可.
【考點(diǎn)精析】關(guān)于本題考查的絕對(duì)值不等式的解法,需要了解含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào)才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體ABCD-A1B1C1D1中,如圖.

(1)求證:平面AB1D1∥平面C1BD;
(2)試找出體對(duì)角線A1C與平面AB1D1和平面C1BD的交點(diǎn)E,F(xiàn),并證明:A1E=EF=FC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)為了解下屬某部門對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問(wèn)50名職工,根據(jù)這50名職工對(duì)該部門的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

(1)求頻率分布圖中 的值,并估計(jì)該企業(yè)的職工對(duì)該部門評(píng)分不低于80的概率;
(2)從評(píng)分在 的受訪職工中,隨機(jī)抽取2人,求此2人評(píng)分都在 的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校做了一次關(guān)于“感恩父母”的問(wèn)卷調(diào)查,從8~10歲,11~12歲,13~14歲,15~16歲四個(gè)年齡段回收的問(wèn)卷依次為:120份,180份,240份,x份.因調(diào)查需要,從回收的問(wèn)卷中按年齡段分層抽取容量為300的樣本,其中在11~12歲學(xué)生問(wèn)卷中抽取60份,則在15~16歲學(xué)生中抽取的問(wèn)卷份數(shù)為( )
A.60
B.80
C.120
D.180

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位最近組織了一次健身活動(dòng),活動(dòng)分為登山組和游泳組,且每個(gè)職工至多參加其中一組.在參加活動(dòng)的職工中,青年人占42. 5%,中年人占47. 5%,老年人占10%. 登山組的職工占參加活動(dòng)總?cè)藬?shù)的 ,且該組中,青年人占50%,中年人占40%,老年人占10%. 為了了解各組不同年齡層次的職工對(duì)本次活動(dòng)的滿意程度,現(xiàn)用分層抽樣方法從參加活動(dòng)的全體職工中抽取一個(gè)容量為200的樣本.試確定:
(1)游泳組中,青年人、中年人、老年人分別所占的比例;
(2)游泳組中,青年人、中年人、老年人分別應(yīng)抽取的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的右焦點(diǎn)為F(1,0),且點(diǎn) 在橢圓C上,O為坐標(biāo)原點(diǎn). (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過(guò)定點(diǎn)T(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A、B,且∠AOB為銳角,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2x3+3ax2+3bx+8在x=1及x=2處取得極值.
(1)求a、b的值;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C在直角坐標(biāo)系xOy下的參數(shù)方程為 (θ為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程; (Ⅱ)直線l的極坐標(biāo)方程是ρcos(θ﹣ )=3 ,射線OT:θ= (ρ>0)與曲線C交于A點(diǎn),與直線l交于B,求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 是奇函數(shù)且當(dāng) 時(shí)是減函數(shù),若 ,則函數(shù) 的零點(diǎn)共有( )
A.4個(gè)
B.5個(gè)
C.6個(gè)
D.7個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案